Ch. 4.4 Limits at Infinity

Recall from 2.2 Definition: We write
\[\lim_{x \to a} f(x) = L \]
and say “the limit of \(f(x) \), as \(x \) approaches \(a \) is equal to \(L \)”

In this section we are interested in when it is the case that \(\lim_{x \to \infty} f(x) = L \)

Definition: Let \(f \) be a function defined on some interval \((a, \infty)\). Then
\[\lim_{x \to \infty} f(x) = L \]
means that the values of \(f(x) \), can be made arbitrarily close to \(L \) by taking \(x \) sufficiently large”

Example: Let us consider \(\lim_{x \to \infty} \frac{1}{x} \).

What happens to this function as \(x \) gets increases?

Example: Let us consider \(\lim_{x \to \infty} \frac{1}{x^2} \).

What happens to this function as \(x \) gets increases?
What happens to this function as \(x \) gets decreases?
Theorem If \(r > 0 \) is a rational number (ratio of integers), then \(\lim_{x \to \infty} \frac{1}{x^r} = 0 \).

If \(r > 0 \) is a rational number (ratio of integers) such that \(xr \) is defined for all \(x \), then \(\lim_{x \to \infty} \frac{1}{x^r} = 0 \).

Strategy on using the Theorem for other limits

Example: Evaluate \(\lim_{x \to \infty} \frac{3x^2}{x^2 - x} \).

Example: Evaluate \(\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \).

What these limits mean to the graph

Definition The line \(y = L \) is called a horizontal asymptote of the curve \(y = f(x) \) if either \(\lim_{x \to \infty} f(x) = L \) or \(\lim_{x \to -\infty} f(x) = L \).
Example: This is the graph of \(f(x) = \frac{1}{x-3} \).

Does it have a horizontal asymptote? If so, what is it and use calculus to argue that it is a horizontal asymptote.

Recall from Ch. 2.2

Definition: The line \(x = a \) is called a vertical asymptote of the curve \(y = f(x) \) if at least one of the following statements is true:

\[
\lim_{x \to a^-} f(x) = \infty, \quad \lim_{x \to a^+} f(x) = \infty, \quad \lim_{x \to a^-} f(x) = \infty, \quad \lim_{x \to a^+} f(x) = \infty
\]

\[
\lim_{x \to a^-} f(x) = -\infty, \quad \lim_{x \to a^+} f(x) = -\infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = -\infty
\]

Example: Find the horizontal and vertical asymptotes of the graph of the function \(f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5} \)
Example: Evaluate \(\lim_{x \to \infty} \sin x \)

Infinite Limits at Infinity

What should \(\lim_{x \to \infty} f(x) = \infty \) mean?

Example: Evaluate \(\lim_{x \to \infty} x^2 \) and \(\lim_{x \to -\infty} x^2 \)

Example: Evaluate \(\lim_{x \to \infty} (x^2 - x) \)

Example: Evaluate \(\lim_{x \to \infty} \frac{x^2 + x}{3 - x} \)