1. The point \((p,s)\) is on the graph of \(y = \log_b(x)\). Select the corresponding point on the graph of the inverse function.

a. \((s,-p)\)
b. \((-s,p)\)
c. \((-p,-s)\)
d. \((p,-s)\)
e. \((s,p)\)

2. The graph of \(y = \log_{\frac{1}{6}}(x)\) is translated 2 units to the left and 3 units down. Select the equation that corresponds to the new graph.

a. \(y = \log_{\frac{1}{6}}(x-3)-2\)
b. \(y = \log_{\frac{1}{6}}(x+3)+2\)
c. \(y = \log_{\frac{1}{6}}(x+2)-3\)
d. \(y = \log_{\frac{1}{6}}(x+2)+3\)
e. \(y = \log_{\frac{1}{6}}(x+3)-2\)
3. Given the graph of \(f(x) = \log_6(x) \) (the solid line), select the correct equation for the translated graph \(g(x) \) (the dashed line).

a. \(g(x) = \log_6(x) - 2 \)

b. \(g(x) = \log_6(x) + 2 \)

c. \(g(x) = \log_6(x-2) \)

d. \(g(x) = \log_6(x+2) \)
4. The four graphs shown represent the following four functions:

\[y = \log_4 x \]
\[y = \log_5 x \]
\[y = \log_{1/4} x \]
\[y = \log_{1/5} x \]

Select the graph of the function \(y = \log_5 x \).

a.

b.
5. The four graphs shown below represent the following four functions:

\[y = \log_2 x \]
\[y = \log_4 x \]
\[y = \log_{1/3} x \]
\[y = \log_{1/4} x \]

Select the graph of the function \(y = \log_{1/3} x \).