Introduction To Computers and Programming

Outline

• Computer and information
• History of computer technology

What is a computer?

A computer is an information-processing machine that performs simple tasks according to specific instructions. This means it can store, retrieve, output and process data. Data is a collection of unorganized facts, which includes words, numbers, images, and sound.

Computer system

• Hardware -- physical components of computer that you see or touch
• Software -- computer programs that instruct hardware to perform specific tasks
• A computer program is a set of instructions written in a programming language.

Basic Computer Components

• Central Processing Unit
• Storage -- memory
• Input devices
• Output devices

Categories of Computers

• Personal computers (PCs)
• Minicomputers
• Mainframe computers
• Supercomputers
Personal Computers
- Desktop computers
- Network of computers and Web appliances -- WebTV
- Laptop or notebook computers
- Handheld computers -- small personal computers

Minicomputers
A minicomputer is designed for a small group of organizations with a more powerful computing capabilities. The computing process of a minicomputer can be accessed by several users via terminal that connected to it.

Mainframe Computers
A mainframe computer is a large, expensive, and powerful computing process that allows hundred and thousand users access its computing capabilities.

Supercomputers
A supercomputer is the fastest, most powerful, and most expensive. It is designed specifically for applications requiring complex, sophisticated mathematical calculations -- weather forecasting, medical image processing, petroleum exploration,...

Servers
A server is a computer, commonly a desktop or a more powerful desktop-like computer, connected to a computer network. It provides resources such as programs and information to be accessed by the desktop computers called clients in the network.

History of Computer Technology
- The first computer
- The first generation (1950s)
- The second generation (1960s)
- The third generation (1965 to 1975)
- The fourth generation (1975 to 1991)
- The fifth generation (1991)
The First Computer

The first machine ABC (Atanasoff Berry Computer) to employ electronics (vacuum tubes) was developed in 1939 by a physicist John V. Atanasoff and Clifford Berry at Iowa State University. This was used to solve simultaneous linear equations.

ENIAC

In 1946, J. Presper Eckert and John Mauchly at Moore School of Engineering, University of Pennsylvania developed the first large-scale computer called ENIAC (Electronic Numerical Integrator and Computer). It used 17,480 vacuum tubes. This Machine uses the program to control calculations.

Stored-Program Computer

In 1946, John Von Neumann proposed the concept of stored program computer.
- encode both program and data as binary number,
- store the program along with the data electronically in a set of switches (computer memory),
- provide a central processing unit that not only perform calculations but also fetch, decode and execute the instructions contained in the program.

The First Generation

In 1951, J. Presper Eckert and John Mauchly built the first general-purpose commercial computer, the UNIVAC. This is the first generation of commercial computers. The instructions were written machine language. UNIVAC used less number of vacuum tubes then ENIAC.
The Second Generation

-真空管被晶体管所取代。
-计算机更快更小。
-它有穿孔卡用于输入、磁带存储和磁盘存储。
-发展了高级程序设计语言：COBOL（通用商业导向语言）和FORTRAN（公式翻译器）。

ASCII（美国标准信息互换代码）在1963年被开发。

IBM在1964年宣布了一条新的计算机称为System/360。

The Third Generation

-时间共享
-批处理
-集成电路（ICs）的发展
-小规模集成和中规模集成
-广域网
-互联网

The Fourth Generation

-大规模集成电路
-微处理器
-MS-DOS
-命令行界面
-图形界面

The Fifth Generation

-人工智能（AI）
-万维网
-局域网
-无线技术
-电子商务

What is Programming?

编程是一个过程，用于规划任务或事件的一系列指令。
Computer Programming

- A *computer programming* is a process of planning a sequence of instructions for a task or an event to be performed by a computer.
- A *computer program* is a sequence of instructions for a task to be performed by a computer.

How do we write a Program?

There are two phases to write a program:
- Problem solving
- Implementation

Problem -Solving Phase

- **Analysis and Specification**: Determine precise objective of the solution to the problem
- **Design a solution (Algorithm)**: Develop a logical sequence of steps to solve the problem.
- **Verification**: Check whether the solution does solve the problem

Implementation Phase

- **Coding (Program)**: Translate the design or algorithm into a programming language
- **Testing**: Have the computer follow the instruction in the program (Run the program) and check the results

Maintenance Phase

- **Utilization**: Use the program
- **Maintain**: Revise or modify the program according to changing requirements

What is an algorithm?

- An *algorithm* is a set of steps for solving a problem in a finite amount of time.
Example 1
The Euclidean for finding the greatest common divisor of two positive integers:
– Assign the larger number to M and smaller to N
– Divide M by N, and call the remainder R
– If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2; otherwise, the greatest common divisor is the value currently assigned to N

Example 2
A new student wants to attend University of Houston-Downtown
• Apply for admission or readmission and financial aid.
• Attend New Student Orientation.
• Take any required placement tests.
• Plan your schedule and get course approvals.
• Register for classes.
• Pay tuition and fees.
• Get UHD ID, parking permit, and locker

What is a Programming Language?
A Programming language is a set of rules, symbols, and special words used to construct a program.
Classification:
– High level Language
– Assembly Language
– Machine Language

High-Level Language
A High-level language is a language that uses code resembling the English language. For examples, C++, Java, FORTRAN, COBOL, and Ada.

Assembly Language
An Assembly language is a low-level language that uses a mnemonic to represent each of the machine language instructions for a particular computer.

Machine Language
A Machine language is the lowest level of programming languages that contains binary-coded instructions which directly instructs a computer to perform the task.
Example of Assembly and Machine Language Instructions

- **ADD** 100101
- **SUB** 010011

Compiler

- **An assembler** is a program that translates an assembly language into machine code.
- **A compiler** is a program that translates a high-level language into machine code.
- **A source program** is a program written in a high-level programming language.
- **An object program** is a source program in machine code.

Basic Computer Architecture

- central processing unit (CPU)
- memory unit
- input devices
- output devices

Central Processing Unit - CPU

- **arithmetic logic unit** (ALU): performs arithmetic and logic calculations.
- **control unit** (CU): coordinates the actions of the other components so that instructions (the program) are executed in sequence.

Memory

- consists of memory locations (or words)
- each memory location contains a string of zeros or ones.
Input/Output Device

- **Input device** An input device is a device that allows a user to communicate information to the computer.
- **Output device** An output device is a device that the computer communicates with the user.

Secondary/Auxiliary Storage

- magnetic tape drives
- disk drives
- CD ROM drives

Terminology

- Peripheral Device:
 - Input device
 - Output device
 - Secondary storage device
- Hardware
 - The physical components of a computer
- Software
 - Computer programs

Computer Software Organization

Types of Software

- System software – programs that manage computer hardware and software
 - operating systems
 - System utilities – anti-virus software, uninstall software
- Application software – programs that provide users to perform specific tasks such as word processing, video editing software, Web browsers

Operating System

An operating system is a primarily resource manager that manages computer hardware in the form of processor, storage, I/O devices, communication devices, and data.
Example

It controls:
– file system
– execution of user commands
– access to the system
– scheduling user's time
– sharing data

Types of Operating Systems

• Command-line interface – DOS
• Graphical User interface (GUI) -- Windows

Application Software

• Off-the-shelf software or Canned software
 – Microsoft Office
 – Netscape
 – Internet explorer
• Custom software

Programming Environment

An editor is an application program that allows the user to create a program file (edit and store a program in a file) called source program or create a data file.

A compiler is a program that translates a source program into a sequence of instructions and data (in machine code called object program) that can be executed by a computer.

Representation and Storage of Information

In a computer data is represented by 1s and 0s (binary). A bit (binary digit) can be either 1 or 0. A byte is a group of 8 bits.

Classification of Information

– visual information (e.g. pictures, images)
– numeric information (e.g. numbers, fractions, etc.)
– character or symbol information (e.g. a, b,…z, A,…, Z, 1,…, 9, 0, &; @; <, <, etc.)
– audio information (e.g. music, speech, bird songs, etc.)
– command or instructional information (e.g. recipes, computer programs, etc.)
Information Representation

Information can be represented by binary numbers that can be associated with parts of an electronic machine and their state or condition at a given moment.

Binary Numbers

- similar to the familiar decimal numbers
- binary numbers use only the two symbols 1 and 0. Also, the position values are different from those of the decimal system.

Representing Symbol and text

- EBCDIC (Binary Coded Decimal Interchange Code) pp. A18

Representing Picture

- pixel (PICture ELelement)

Representing Sound

- numbers

Representing Instructions

ADD Instruction

<table>
<thead>
<tr>
<th>011</th>
<th>1101100</th>
</tr>
</thead>
<tbody>
<tr>
<td>code for addition</td>
<td>address of the number to be added</td>
</tr>
</tbody>
</table>