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Data Organization

Computers use binary number system
to store information as O’s and 1’s

Bits
® A bit is the fundamental unit of computer
storage
» A bit can be 0 (off) or 1 (on)
Related bits are grouped to represent
different types of information such as

numbers, characters, pictures, sound,
instructions
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* A nibble is a group of 4 990L
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bits o011

e A nibble is used to o100
represent a digit in oo

Hex (from 0-15) and o111

BCD (Binary-Coded 1000
Decimal) (from 0-9) —
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Bytes

Bytes
# A byte is a group of 8 bits that is used to
represent numbers and characters

7 6 5 4 3 2 1 0 5§ 4 3 2 1 0

S _I_I_l_lllll

H.O. Nibble L.O. Nibble
» A standard code for representing
numbers and characters is ASCII
(American Standard Code for
Information Interchange )

Byte Size

Bytes

* How many different combinations of O’s
and 1's with 8 bits can form?

# In general, how many different
combinations of O’s and 1’s with N bits
can form?

* How many different characters that a
byte (8 bits) can represent?
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Words

¢ A word is a group of 16 bits or 2 bytes that is
used to represent non-Roman characters in
UNICODE

1514 13121110 9 8 7 6 5 4 3 2 1 0
H. 0. Byte L. O. Byte
& An international standard code for representing
non-Roman characters like Asian, Greek, and
Russian characters is UNICODE

Double Words

Double Words

# A double word is a group of 32 bits or 4
bytes or 2 words

31 23 15 7 0

EEEEEEEEEEEEEEEE | | ]
H.O. Word L.O. Word

31 23 15 T 0

EEEEEEE | | | | SESEEEEEE | ||
H.O. Byte Byte # 2 Byte# 1 L.O. Byte
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Related Bytes

A nibble is a half-byte (4-bit) - hex representation
A word is a 2-byte (16-bit) data item

A doubleword is a 4-byte (32-bit) data item

A quadword is an 8-byte (64-bit) data item

A paragraph is a 16-byte (128-bit) area

A kilobyte (KB) is 210 = 1,024 bytes ~ 1 K bytes)

A megabyte (MB) is 220 = 1,048,576 ~ 1 MB

A Gigabyte (GB) is 230 = 1,073,741,824 ~ 1 GB

A Terabyte (TB) is 240 = 1,099,511,627,776 ~ 1 TB

CS 2401 Comp. Org. &
Assembly Systems -- Chapter 2

Data Representation in Computer 9

Numbering Systems

E Unsigned number system

B Signed binary Systems
¢ Signed and magnitude system
e 1's complement system
e 2’s complement system

E Hexadecimal system
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Binary Number System

B base 10 -- has ten digits:
0,1,2,3,4,5,6,7,8,9
® positional notation
2401 = 2 x10% + 4 x10%2+ 0 x10? + 1 x10°
E base 2 -- has two digits: 0 and 1
s positional notation
1101, =1 x232+1x22+0x21+1x2°

=8 + 4 + 0 +1 =13
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Binary Positional Notation

If
N = bn -lb n-2"" blbO

then

N:bn_lxzn_1+bn_2><2n_2+"'

by x 29
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Positional Notation — Convert base
2 or 16 to base 10

Position cos 4 3 2 1 0

. .- 104 103 10?2 10t 100
Positional Value . 10000 1000 100 10 1
2 4 0 1

2x1000+ 4x100+ 0x10 + 1x1 = 2401,

Position soo 8 7 6 5 4 3 2 1 0

Positional cco 7 27 74 20 24 3 Z 2t 20
Value coo 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
1 0 il 1 0
16+ 0+ 4 + 2 + 0=22

BinHex Application --
http://cms.dt.uh.edu/faculty/ongards/links/links.php?id=1
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Unsigned Binary Code

Use for representing integers without
signed (natural numbers)

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

T —— O etome — Ghapter 3
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Number of Bits Required in
Unsigned Binary Code

Decimal to Binary Conversion

E What is the range of values that can
be represented with n bits in the
Unsigned Binary Code?

[0, 2n-1]
E How many bits are required to
represent a given number N in
decimal?

Min. Number of Bits = log,(N+1)

CS 2401 Comp. Org. & Data Representation in Computer 15.
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B Suppose we want to convert

the decimal number 190 to 190
base 3. -162 =3%x%x2
& We know that 35 = 243 28

so our result will be less
than six digits wide.
The largest power of 3
that we need is
therefore 34 = 81, and
81 x 2 = 162.

¢ Write down the 2 and
subtract 162 from 190,
giving 28.

CS 2401 Comp. Org. & Data Representation in Computer
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Decimal to Binary Conversion

E  Converting 190 to base 3...

# The next power of 3 is 190 o4
33 =27. We'll need one - 162 =37 X2
of these, so we subtract 28 5
27 and write down the - 27 =3"x1
numeral 1 in our result. 1
- 0 =32x0
# The next power of 3, 32 7
=9, is too large, but we
have to assign a
placeholder of zero and
carry down the 1.
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Decimal to Binary Conversion

B Converting 190 to base 3...

e 31 =3 js again too 190
large, so we assign a - 162 =3%x%x2
zero placeholder. 28 ,
e The last power of 3, 3 = 27 =3°X1
0 =1, is our last 1
choice, and it gives us - 0=32x0
a difference of zero. 1
& Our result, reading - 0 =3'x0
from top to bottom is: : ;
190,, = 21001, —1- 3T X
CS 2401 Comp. Org. & Data Representation in Computer 18
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Decimal to Binary Conversion

B Converting 190 to base 3...
* First we take the

number that we wish
to convert and divide 3 @ 1
it by the radix in 63

which we want to
express our result.

& In this case, 3
divides 190 63
times, with a
remainder of 1.

= Record the gquotient
and the remainder.
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Decimal to Binary Conversion

B Converting 190 to base 3...

& 63 is evenly divisible
by 3. 31190 1
® Our remainder is 3163 0
zero, and the 51
quotient is 21.
CS 2401 Comp. Org. & Data Representation in Computer 20
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Decimal to Binary Conversion

E  Converting 190 to base 3...

# Continue in this way
until the quotient is 3
zero.

=
w
o

N o= o O =

3
# In the final calculation,
we note that 3 divides 3

2 zero times with a

Successive division by 2

E What is
representation of
79,0 in binary?

O 0O RrR P R R

1
Therefore 79,,= 101111,

remainder of 2. 317
# Our result, reading 3|2
from bottom to top is:
190,, = 210014 0
CS 2401 Comp. Org. & Data Representation in Computer 21
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Reverse Positional Notation

Positional ' 515 256 128 64 32
Value
1 0
+ 0
Since
64<79 5

BinHex Application --
http://cms.dt.uh.edu/faculty/ongards/links/links.php?id=1

Decimal to Binary Conversion

# Fractional decimal values have nonzero digits to the
right of the decimal point.

# Fractional values of other radix systems have
nonzero digits to the right of the radix point.

® Numerals to the right of a radix point represent
negative powers of the radix:

0.4710;0= 4x10-1+7x102+ 1 x 103
0.110, = 1x21+1x22

= % + Y

= 05 + 0.25= 0.75

Introduction to Information Representations 23
Computer Technology
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Decimal to Binary Conversion

s As with whole-number conversions, you can use
either of two methods: a subtraction method
and an easy multiplication method.

& The subtraction method for fractions is identical
to the subtraction method for whole numbers.
Instead of subtracting positive powers of the
target radix, we subtract negative powers of the
radix.

+ \We always start with the largest value first, n -
1, where n is our radix, and work our way along
using larger negative exponents.
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Decimal to Binary Conversion

B The calculation to the right
is an example of using the

subtraction method to 0.8125

convert the decimal 0.8125 _ c V= o1

To-bInaEY: 0.5000 2 x 1
0.3125

e Our result, reading

_ — 5-2
from top to bottom -0.2500 2 * 1

i 0.0625
_ — -3
0.8125,, = =0 =277 xg
0.1101, 0.0625

~ — o-4
e Of course, this - 0.0625 =27"x1
method works with 0
any base, not just
binary.
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Decimal to Binary Conversion

E Using the 8125
multiplication method . ><62§

to convert the decimal
0.8125 to binary, we
multiply by the radix 2.

® The first product
carries into the
units place.
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Decimal to Binary Conversion

B Converting 0.8125 to .8125
binary . .. x_ 2
1.6250

® |gnoring the value

in the units place at L6250
each step, continue X 2
multiplying each 1.2500
fractional part by 2500
the radix. X 2
0.5000

CS 2401 Comp. Org. & Data Representation in Computer 28
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Decimal to Binary Conversion

B Converting 0.8125 to binary . .. 8125
# You are finished when the X 2
product is zero, or until 1.6250

you have reached the
desired number of binary . 6250
places. x 2

#» Our result, reading from
top to bottom is:

0.8125,,=0.1101,

& This method also works
with any base. Just use
the target radix as the
multiplier.
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Decimal to Binary Conversion

B The binary numbering system is the most important radix
system for digital computers.

B However, it is difficult to read long strings of binary
numbers-- and even a modestly-sized decimal number
becomes a very long binary nhumber.

& For example:
11010100011011, = 13595,,

B For compactness and ease of reading, binary values are
usually expressed using the hexadecimal, or base-16,
numbering system.

Unsigned Conversion

E Convert an unsigned binary number
to decimal
use positional notation (polynomial
expansion)
E Convert a decimal number to
unsigned Binary
use successive division by 2
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E Represent 26,, in unsigned Binary

Code
26,, = 11010,

E Represent 26,4 in unsigned Binary

Code using 8 bits
26,, = 00011010,

E Represent (26),, in Unsigned Binary

Code using 4 bits -- not possible

CS 2401 Comp. Org. & Data Representation in Computer 32
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Signed Binary Codes

These are codes used to represent
positive and negative numbers.
®» Signhed and Magnitude System
® 1’'s Complement System
» 2’'s Complement System

CS 2401 Comp. Org. & Data Representation in Computer
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Signed and Magnitude

E The most significant (left most) bit
represent the sign bit
e O is positive
¢ 1 is negative

E The remaining bits represent the
maghnitude
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Examples of Sighed &
Magnitude

Decimal 5-bit Sign
and Magnitude
+5 00101
-5 10101
+13 01101
-13 11101

35

Signed and Magnitude in 4 bits

0 0000 -0 1000
I 0001 o 1001
2 0010 -2 1010
3 0011 -3 1011
4 0100 -4 1100
5 0101 =5 1101
6 0110 -6 1110
7 0111 -7 1111

CS 2401 Comp. Org. & Data Representation in Computer 36
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Examples

Decimal Signed  8-bit Signed

2610 011010, 00011010

-2610 111010, 100110102

CS 2401 Comp. Org. & Data Representation in Computer
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1’s Complement System

E Positive numbers:
® same as in unsigned binary system
¢ pad a O at the leftmost bit position
F Negative numbers:

& convert the magnitude to unsigned
binary system

¢ pad a O at the leftmost bit position
& complement every bit

CS 2401 Comp. Org. & Data Representation in Computer 38
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Examples of 1’s Complement

Decimal 5-bit 1’s complement
5 00101
-5 11010
13 01101
-13 10010

39

1’'s Complement in 4 bits

0 0000 -0 1111
1 0001 -1 1110
2 0010 -2 1101
3 0011 -3 1100
4 0100 -4 1011
5 0101 -5 1010
6 0110 -6 1001
7 0111 -7 1000
posembly 0 O e Chapier 3 °
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Examples

Decimal Signed  8-bit Signed

2610 011010, 00011010

-26;0 100101, 11100101,

CS 2401 Comp. Org. & Data Representation in Computer
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2’s Complement System

B Positive numbers:
# same as in unsigned binary system
¢ pad a O at the leftmost bit position
E Negative numbers:

& convert the magnitude to unsigned
binary system

¢ pad a O at the leftmost bit position
¢ complement every bit
e add 1 to the complement number

CS 2401 Comp. Org. & Data Representation in Computer
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Examples of 2’s Complement

Decimal 5-bit 2’s complement
5 00101
-5 11011
13 01101
-13 10011

43

2’'s Complement in 4 bits

0 0000 -1 1111
1 0001 -2 1110
2 0010 -3 1101
3 0011 -4 1100
4 0100 -5 1011
5 0101 -6 1010
6 0110 -7 1001
7 0111 -8 1000

posembly 0 O e Chapier 3
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Examples

Decimal Signed  8-bit Signed
2610 011010, 00011010;
-26;0 100110, 11100110,

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2
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Convert 2’s Complement to decimal

Positive 2's complement numbers

s convert the same as in unsigned binary
Negative 2's complement numbers
s complement the 2’s complement number
® add 1 to the complemented number
®» convert the same as in unsigned binary

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer 47
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More Examples

Represent 65 in 2’s complement
65 = 0100 0001,

E Represent -65 in 2’s complement
-65 = 1011 1111,

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2
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Examples
2’s complement Decimal
00101 4+1=5
11011 — 00100 + 1 4+41=5—>5-5
01101 8+4+1=13

10011 - 01100+1 8+4+1=13—>-13

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer 48
Systems -- Chapter 2
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Mathematical Formula

F Formula to convert a decimal number
to a 1’'s complement --
N'=2"-N-1
E Formula to convert a decimal number
to a 2’s complement --
N'=2"-N
where N is the binary number
representing the decimal with n
number of bits

CS 2401 Comp. Org. & Data Representation in Computer 50
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Hexadecimal Notation

Convert Binary «— Hex

E base 16 -- has 16 digits:
0123456789ABCDEF

E each Hex digit represents a group of
4 bits (i.e. half of a byte or a nibble)
0000 to 1111

B use as a shorthand notation for
convenient

CS 2401 Comp. Org. & Data Representation in Computer
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Binary Hex
1111 0110b F6h

1001 1101 0000 1010b 9DOAhD
1111 0110 1110 0111b FG6E7h

1011011b 5Bh

CS 2401 Comp. Org. & Data Representation in Computer 52
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13



Examples

& ASCII value of character ‘D’ in Hex
D = 0100 0100bgc;; = 44hasc

# Represent 37d in 2's complement using Hex.
37d = 010 0101b,.. = 0010 0101b,.
= 25h,.¢
* Represent -37d in 2's complement using Hex.
-37d =101 1011b, = 1101 1011b,., = DBh,

CS 2401 Comp. Org. & Data Representation in Computer 53
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Convert Hex <= Decimal

E Convert Hex to decimal
® use positional (polynomial expansion) notation
3BAh =3x16%2 +Bx 161+ A x16°
=3 x256 + 11 x 16 + 10 x 1 = 954d

E Convert decimal to Hex

# Use successive divisions by 16
359/16 = 22 R 7,
22/16 = 1R 6,
1/16 = OR 1

359d = 167h
CS 2401 Comp. Org. & Data Representation in Computer
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Covert Large Binary to Decimal

Convert 1001 0011 0101 1100b to decimal
Method 1:

» Use polynomial expansion methods
Method 2:

® Convert number to hex, then convert it
to decimal.

1001 0011 0101 1100b = 935Ch
935Ch = 37724d

CS 2401 Comp. Org. & Data Representation in Computer 55
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Addition and Subtraction in
Signed and Magnitude

(@) 5 0101
+2 +0010
7 0111
(b) -5 1101
-2 +1010
-7 1111
© 5 0101
-2 +1010
3 0011
(d) -5 1101
+2 +0010
-3 1011
CS 2401 Comp. Org. & Data Representation in Computer
Assembly Systems -- Chapter 2
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Addition and Subtraction in
1’'s Complement

(a) 5 0101
+2 +0010
A 0111
() -5 1010
-2 +1101
-7 1 0111
—
1000
(c) 5 0101
-2 +1101
3 1 0010
I
0011
©) -5 1010
+2 +0010
-3 1100
CS 2401 Comp. Org. & Data Representation in Computer
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Addition and Subtraction in
2’s Complement

(@ 5 0101

+2 +0010
7 0111
(b) -5 1011
-2 +1110
-7 1 1001
© 5 0101
=2 +1110
3 1 0011
(@) -5 1011
+2 +0010
-3 1101
CS 2401 Comp. Org. & Data Representation in Computer
Assembly Systems -- Chapter 2
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Theoretical Facts

E Why is the carry out from adding 1’s
complements added to the sum?
s N,')=2"—-N;—l1landN,=2"—N,—-1
E Why is the carry out from adding 2’s
complements dropped?
s N,"=2"—N; and N,' =2"—N,

CS 2401 Comp. Org. & Data Representation in Computer
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Overflow Conditions

Carry-in = carry-out

0111 1000

5 0101 -5 1011

+3 +0011 -4 +1100

-8 1000 7 10111

Carry-in = carry-out

0000 1110

+5 0101 -2 1110

+2 +0010 -6 +1010

7 0111 -8 11000

CS 2401 Comp. Org. & Data Representation in Computer
Assembly Systems -- Chapter 2

60

15



Signed Integer Representation

B Overflow and carry are tricky ideas.

B Signed number overflow means nothing in the context of
unsgned numbers, which set a carry flag instead of an
overflow flag.

E If a carry out of the leftmost bit occurs with an unsigned
number, overflow has occurred.

B Carry and overflow occur independently of each other.

Expression Result Carry? Overflow? Correct result?
0100(+4)+0010(+2) 0110(+6) No No Yes
0100(+4)+0110(+6) 1010(-6) No Yes No
1100(-4)+1110(-2) 1010(-6) Yes No Yes
1100(-4)+1010(-86) 0110(+86) Yes Yes No

CS 2401 Comp. Org. & Data Representation in Computer 61
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Signed Integer Representation

0011 (3) 1011 (-5)
x 0110 (6) x 1100 (-4)
+ 0000 + 0000
+ 0011 + 0000
+ 0011 + 1011
+ 0000 + 1011
00010010 (18) 10000100 (-124)

62

Signhed Integer Representation

Sighed Integer Representation

E Example:
98765 x 1001 = 98765 x(1000 + 1)
98765 x 1000 + 98765

98765 x 999 = 98765x(1000 - 1)
= 98765 x 1000 — 98765
B Example:
0011 x 0110 0011 x(1000 - 0010)

= 0011 x 1000 — 0011 x 0010

63

B Booth’s Algorithm
® Fast multiplication
& Signed multiplication

B In Booth’s algorithm, the first 1 in a string of 1s in the
multiplier is replaced with a subtraction of the

multiplicand.

B Shift the partial sums until the last 1 of the string is
detected.
B Then add the multiplicand.

64
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Signed Integer Representation

| @ la,la,—a | _ Operation | 0011

in middle of string 0.

= 2 No operation. x 01100
end of string 1.

0 1 1 Add multiplicand. +00000000
beginning of string 1.

1 0 -1 Subtract +0110001
multiplicand.

1 1 0 in middle of string 1. +000000

No operation.

+00011
Ignore all bits over 2n. (LOOOlOOlO

65

Signed Integer Representation
1101 (-3) 0011 (+3)
x 1100 (-4)
00000000
0000000
+ 000001
00000
00001100 (+12)

+

+

+

66

Signed Integer Representation

00110101 (53)
x 01111110 (126)
0000000000000000
111111111001011
00000000000000
0000000000000
000000000000
00000000000
0000000000

+ 000110101
Ignore all bits over 2n. @9‘0001101000010110

+ o+ o+ +

67

Signed Integer Representation

0101 (+5)

1100 ()
— 0000 1100 O
+ 00000000 00 rshf 0000 0110 O
+ 0000000 00 rshf 0000 0011 O
10 sb +1011 0011 0
+ 111011 rshf 1101 1001 1
11 rshf 1110 1100 1

+ 00000

11101100 (-20)

68
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Signed Integer Representation

0010110 (+22) 1101010(-22)
x 1011110 (-34)
+ 00000000000000
+ 1111111101010
+ 000000000000
+ 00000000000
+ 0000000000
+ 000010110
+ 11101010
111110100010100 (-748)

69

Signed Integer Representation

0000000 1011110 0
00 rshf 0000000 0101111 0
1 sub +1101010 0101111 a
rshf 1110101 0010111
11 rshf 1111010 1001011 1
11 rshf 1111101 0100101 1
11 rshf 1111110 1010010 1
- +0010110
01 & o 0010100 1010010 0
= 0001010 0101001
+1101010
10 Sur:)f 1110100 0101001 1
= 1111010 0010100

70

Addition and Subtraction in
Hexadecimal System

Addition
(9F1B) 15 +(4A36)3 : 1 1
9F1B
4A36
E951

+

Subtraction

(9F1B)is -(4A36)16 : 16
9F1B
4736
54E5

CS 2401 Comp. Org. & Data Representation in Computer 71
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Floating-Point Representation

B Floating-point numbers allow an
arbitrary number of decimal places to
the right of the decimal point.

# For example: 0.5 x 0.25 = 0.125

E They are often expressed in scientific
notation.
& For example:
m 0.125 = 1.25 x 101
m 5,000,000 = 5.0 x 108

CS 2401 Comp. Org. & Data Representation in Computer 72
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Floating-Point Representation

E Computers use a form of scientific notation
for floating-point representation

B Numbers written in scientific notation have
three components:

Sign Mantissa Exponent

+)1.25 x 1071

CS 2401 Comp. Org. & Data Representation in Computer 73
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Floating-Point Representation

B Computer representation of a
floating-point number consists of
three fixed-size fields:

Sign

Exponent Significand

E This is the standard arrangement of
these fields.

CS 2401 Comp. Org. & Data Representation in Computer 74
Assembly Systems -- Chapter 2

Floating-Point Representation

Sign

Exponent Significand

B The one-bit sign field is the sign of the stored value.

B The size of the exponent field, determines the range
of values that can be represented.

B The size of the significand determines the precision of
the representation.

CS 2401 Comp. Org. & Data Representation in Computer 5.
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Floating-Point Representation

Sign

Exponent Significand

B The IEEE-754 single precision floating point standard
uses an 8-bit exponent and a 23-bit significand.

B The IEEE-754 double precision standard uses an 11-
bit exponent and a 52-bit significand.

For illustrative purposes, we will use a 14-bit model
with a 5-bit exponent and an 8-bit significand.

CS 2401 Comp. Org. & Data Representation in Computer 76
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Floating-Point Representation

Sign

Exponent Significand

B The significand of a floating-point humber is always
preceded by an implied binary point.

B Thus, the significand always contains a fractional
binary value.

B The exponent indicates the power of 2 to which the
significand is raised.

CS 2401 Comp. Org. & Data Representation in Computer 77
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Floating-Point Representation

& Example:
= Express 32,, in the simplified 14-bit floating-point model.

E  We know that 32 is 2°. So in (binary) scientific notation
32 =100000 = 1.0 x 2°>=0.1 x 2.

B Using this information, we put 110 (= 6,,) in the
exponent field and 1 in the significand as shown.

0100110 10000000

CS 2401 Comp. Org. & Data Representation in Computer 78
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Floating-Point Representation

E  The illustrations shown
at the right are all

equivalent IO‘OOIIOIIOOOOOOO‘
representations for 32
using our simplified |0‘001“‘01000000‘
model.

. NOtOnlydOthese ID‘OIUOO[OOlOOOOD]
synonymous
representations waste

0j01001 00010000

space, but they can [ ‘ l l

also cause confusion.

CS 2401 Comp. Org. & Data Representation in Computer 79
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Floating-Point Representation

Sign

Exponent Significand

B Another problem with our system is that we have

made no allowances for negative exponents. We have
no way to express 0.5 (=2-1)! (Notice that there is no
sign in the exponent field!)

All of these problems can be fixed with no changes to our

basic model.
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Floating-Point Representation

B To resolve the problem of synonymous
forms, we will establish a rule that the first
digit of the significand must be 1. This
results in a unique pattern for each
floating-point number.
¢ In the IEEE-754 standard, this 1 is implied

meaning that a 1 is assumed after the binary
point.

# By using an implied 1, we increase the precision
of the representation by a power of two.
(Why?)

In our simple instructional model, we will use no implied bits.
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Floating-Point Representation

E To provide for negative exponents, we will use a
biased exponent.

B A bias is a number that is approximately midway in
the range of values expressible by the exponent. We
subtract the bias from the value in the exponent to
determine its true value.

& In our case, we have a 5-bit exponent. We will use
16 for our bias. This is called excess-16
representation.

B In our model, exponent values less than 16 are
negative, representing fractional numbers.
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Floating-Point Representation

B Example:
® Express 32, in the revised 14-bit floating-point model.

B We know that 32 = 1.0 x 25 = 0.1 x 25.
To use our excess 16 biased exponent, we add 16 to 6,
giving 22,5 (=10110,).

E  Graphically:

010110 10000000
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Floating-Point Representation

B Example:
e Express 0.0625,, in the revised 14-bit floating-point model.
B We know that 0.0625 is 2-4. So in (binary) scientific
notation 0.0625 = 1.0 x 24 = 0.1 x 2-5.

B To use our excess 16 biased exponent, we add 16 to -3,
giving 13;, (=01101,).

001101 10000000
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Floating-Point Representation

B Example:

& Express -26.625,, in the revised 14-bit floating-point
model.

We find 26.625,, = 11010.101,. Normalizing, we have:

26.625,, = 0.11010101 x 25.

B To use our excess 16 biased exponent, we add 16 to 5,
giving 21,4, (=10101,). We also need a 1 in the sign bit.

1(10101 11010101
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Floating-Point Representation

£ The IEEE-754 single precision floating point standard
uses bias of 127 over its 8-bit exponent.
® An exponent of 255 indicates a special value.
m If the significand is zero, the value is = infinity.
m If the significand is nonzero, the value is NaN, “not a
number,” often used to flag an error condition.
®  The double precision standard has a bias of 1023 over
its 11-bit exponent.
s The “special” exponent value for a double precision
number is 2047, instead of the 255 used by the single
precision standard.
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Floating-Point Representation

E Both the 14-bit model that we have
presented and the IEEE-754 floating point
standard allow two representations for
zero.

& Zero is indicated by all zeros in the exponent
and the significand, but the sign bit can be
either O or 1.

B This is why programmers should avoid
testing a floating-point value for equality to
zero.

# Negative zero does not equal positive zero.

Floating-Point Representation
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Floating Point Number Single Precision Representation

1.¢ 0 01111111 Q0000000000000000000000
0.5 Is this correct?| 0 @)OOGG 00000000000000000000000
19.5 0 10000011 00111000000000000000000D
~2. 75 1 10000000 11100000000000000000000
Zero 0 0000000C 0Q000000000000000000000D
+ Infinity 0/1 11111111 00000000000000000000000
NaN 0/1 11111111 any non-zerc significand
Denormalized Number 0/1 00000000 any non-zero significand
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Floating-Point Numbers

B A floating-point number is a
representation for real numbers.
E |EEE standards set a format for

representing floating-point numbers
in binary.

E Example of an IEEE single-precision
format (32 bits long):

® 78.375,, ~ 429CC000,,
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Floating Point Structure

E The Sign Bit
e O denotes a positive number; 1 denotes a
negative number.
B The Exponent
* represent both positive and negative exponents.
® a bias is added to the actual exponent in order
to get the stored exponent.
®» For IEEE single-precision floats, this value is 127
with 8 bits.
e For double precision, the exponent field is 11
bits, and has a bias of 1023.
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Floating Point Structure

B The Mantissa

® The mantissa, also known as the
significand, represents the precision bits
of the number. It is composed of an
implicit leading bit and the fraction bits.

Sign Exponent | Mantissa Bias
Single 1 8 23 127
Double 1 11 52 1023
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IEEE Single-Precision Format

Integral part: 78 = 1001110
fractional part: 0.375 = 3/8 = 1/4 + 1/8

= .01, + .001,
= .011,
78.375,, = 1001110.011,
=1.001110011 x 2%
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IEEE Single-Precision Format

1.001110011 x 26
* Sign bitis O
# Exponent including bias of 127 (127 +6 = 133)
is 1000 0101 in 8 bits

¢ fraction is 00111001100000000000000 23 bits
0 1000 0101 00111001100000000000000

= 0100 0010 1001 1100 1100 0000 0000
0000

=42 9C CO 00
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Conversion Procedure

E The leftmost bit is O for positive and 1 for
negative.

Convert the magnitude to decimal binary.

Convert the binary decimal number to
scientific notation

E Add a bias of 127,, to the exponent to form
the next 8 bits. (to store exponent as a
singed number).

B Fraction bits form the last 23 bits.

CS 2401 Comp. Org. & Data Representation in Computer 94
Assembly Systems -- Chapter 2

Example

45.5 = 45 = 101101
05=1/2=.1
45.5
=101101.1 =1.011011 x 25
= 0 1000 0100 01101100000000000000000

= 0100 0010 0011 0110 0000 OOOO OOOO
0000

=42360000
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Example

-11.25 =1 =1011
0.25=1/4 = .01
-11.25
=-1011.01 = -1.01101 x 23
=1 1000 0010 01101000000000000000000

= 1100 0001 0011 0100 0000 OOOO 0000
0000

=C1340000
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Example

0.125=0=0
0.125 = 1/8 = .001
0.125
=0.001 = 1.0 x 22
= 0 0111 1100 00000000000000000000000

= 0011 1110 0000 0000 0000 0000 0000
0000

= 3E 00 00 00
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Floating-Point Representation

B Floating-point addition and subtraction are
done using methods analogous to how we
perform calculations using pencil and
paper.

B The first thing that we do is express both
operands in the same exponential power,
then add the numbers, preserving the
exponent in the sum.

E If the exponent requires adjustment, we do
so at the end of the calculation.
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Floating-Point Representation

B Example:
#  Find the sum of 12,, and 1.25,, using the 14-bit floating-point model.
B WeAfind 12,, = 0.1100 x 2*. And 1.25,, = 0.101 x 21 = 0.000101
X 24,

B Thus, our sum is 0.110101 x 24.

010100 11000000

+0 10100 00010100

IO|1UIOO|11010100

CS 2401 Comp. Org. & Data Representation in Computer 99
Assembly Systems -- Chapter 2

Floating-Point Representation

E Floating-point multiplication is also
carried out in a manner akin to how
we perform multiplication using pencil
and paper.

E We multiply the two operands and
add their exponents.

E If the exponent requires adjustment,
we do so at the end of the

calculation.
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Floating-Point Representation

& Example:

= Find the product of 12,, and 1.25,, using the 14-bit
floating-point model.

B We find 12,, = 0.1100 x 2*. And 1.25,, = 0.101 x 2.

B Thus, our product is

0.0111100x 25 = 0|10100 |[11000000
01111)(24 x 0|10001 10100000
E  The normalized
product requires an Io|10101|01111000
exponent of 22,, =
10110,.
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Floating-Point Representation

E No matter how many bits we use in a
floating-point representation, our model
must be finite.

B The real number system is, of course,
infinite, so our models can give nothing
more than an approximation of a real
value.

E At some point, every model breaks down,
introducing errors into our calculations.

E By using a greater number of bits in our
model, we can reduce these errors, but we
can never totally eliminate them.
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Floating-Point Representation

F Our job becomes one of reducing error, or
at least being aware of the possible
magnitude of error in our calculations.

B We must also be aware that errors can
compound through repetitive arithmetic
operations.

E For example, our 14-bit model cannot
exactly represent the decimal value 128.5
In binary, it is 9 bits wide:
10000000.1, = 128.5,,
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Floating-Point Representation

E When we try to express 128.5,, in
our 14-bit model, we lose the low-
order bit, giving a relative error of:

128.5-128
128.5

~ 0.39%

B If we had a procedure that
repetitively added 0.5 to 128.5, we
would have an error of nearly 2%
after only four iterations.
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Floating-Point Representation

E Floating-point errors can be reduced when
we use operands that are similar in
maghnitude.

B If we were repetitively adding 0.5 to 128.5,
it would have been better to iteratively add
0.5 to itself and then add 128.5 to this
sum.

E In this example, the error was caused by
loss of the low-order bit.

E Loss of the high-order bit is more
problematic.
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Floating-Point Representation

B Floating-point overflow and underflow can
cause programs to crash.

B Overflow occurs when there is no room to
store the high-order bits resulting from a
calculation.

E Underflow occurs when a value is too small
to store, possibly resulting in division by
zero.

Experienced programmers know that it’s
better for a program to crash than to have
it produce incorrect, but plausible, results.
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Floating-Point Representation

E When discussing floating-point numbers, it
is important to understand the terms
range, precision, and accuracy.

E The range of a numeric integer format is
the difference between the largest and
smallest values that it can express.

B Accuracy refers to how closely a numeric
representation approximates a true value.

E The precision of a number indicates how
much information we have about a value
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Floating-Point Representation

E Most of the time, greater precision leads to
better accuracy, but this is not always true.
® For example, 3.1333 is a value of pi that is

accurate to two digits, but has 5 digits of
precision.

E There are other problems with floating
point numbers.

B Because of truncated bits, you cannot

always assume that a particular floating
point operation is commutative or
distributive.
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Floating-Point Representation

# This means that we cannot assume:
m(a+b)y+c=a+(b+c) or
ma*(b+c)=ab+ ac

E Moreover, to test a floating point

value for equality to some other
number, first figure out how close one
number can be to be considered
equal. Call this value epsilon and use
the statement:

m if (abs(x) < epsilon) then ...
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BCD — Binary Coded Decimal

e A BCD digit is represented by 4 binary
bits or a nibble.

¢ A BCD number is formed by a group of 4
binary bits or nibbles

¢ That means 8 bits can represent BCD
from O — 99 and 16 bits can represent
BCD from 0 - 9999

7T 6 5 4 3 2 1 0

[ 11 1

H.0. Nibble L.O. Nibble
{H.0. Digit) (L.O. Digit)
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Character Representations

E ASCII

E UNICODE
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ASCII Code

e ASCII: American Standard Code for Information
Interchange.

» Used to represent characters and textual
information
# FEach character is represented with 1 byte
m upper and lower case letters: a...z and A...Z
decimal digits -- 0,1,...,9
punctuation characters -- ; , . :
special characters --$& @ / {

control characters -- carriage return (CR) , line
feed (LF), beep
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Examples of

ASCII Code

Bit contents (S):
Bit position:

01010011
76543210

Se= 83 (binary) , 53 (hex)

Bit contents (8):
Bit position:

00111000
76543210

B8 = 56 (binary) , 38 (hex)
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Assembly

Systems -- Chapter 2

ASCII Code in Binary and Hex

Character Binary

A

N O

N

DEL

CS 2401 Comp. Org. &
Assembly

0100 0001
0100 0100
0110 0001
0011 1111
0011 0010
0111 1111

Data Representation in Computer
Systems -- Chapter 2

Hex
41

44
61
3F
32
7F

114

ASCII Groups

ASCII Codes for Numeric Digits

Bit 6 Bit 5 Group
0 0 Control Character
0 1 Digits & Punctuation
1 0 Upper Case & Special
1 1 Lower Case & Special
Resomply - 1 & D R ome - Chapter 2" e

Character Decimal Hexadecimal
(0] 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5. 53 35
6 54 36
7 55 37
8 56 38
9 57 39

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

116
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UNICODE

® UNICODE uses a 16-bit word to
represent a single character

® It can represent 65,536 different
characters
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Representing Colors on a Video
Display

# An image is composed pixels (Picture elements)
¢ Different display modes use different data
representations for each pixel
* A mixture of red, , and blue form a specific
color on the display
® Color depth describes amount of each red,
,-and blue for a mixture on a pixel -- 8, 16,

or 24 bits
s 24-bit display, each color has 256 different
shades
# 16-bit display, each color has 5 or 6 bits of
shades
e 8-bit display, each color has 2 or 3 bits of
shades
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Representing Colors on a Video
Display

Bit-Depth | Number of Colors Type

1 2 monochrome

2 4 CGA

4 16 EGA

8 256 VGA

16 65,536 High Color, XGA

24 16,777.216 True Color, SVGA

32 16,777.216 True Color + Alpha Channel
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Representing Colors on a Video
Display

o A hardware palette allows an 8-bit
display to display a specific color chosen
from the colors of 24-bit display

LI T B N B A ]
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Audio Information
Representation

¢ Audible sounds are the
result of vibrating air
molecules quickly back
and forth between 20
and 20,000 times per
second (Hz)

¢ A computer is ca[:)able of
generate a signal that
repeatedly apply
alternate logic O and 1
for a short period of time
-- square wave

¢ Create a stream of bits
fed to the speaker every
1/40,000 seconds with T
1s and Os, we get a 20 Loico
kHz sound

® It requires 5,000 bytes
per second to generate
20 kHz sound

tock
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Audio Information
Representation

& Analog audio signals are much more complex than square
waves, that is only two different voltage levels are not
enough for representation

Voltage applied
o sp er

Low Voltage

Amplitude
Amplitude

Vi — V\,\/J Tirme —————

CS 2401 Comp. Org. & Data Representation in Computer 122
Assembly Systems -- Chapter 2

Analog to Digital -- Sampling

E Sampling is done at regular intervals of time, often small
fractions of a second.

ELike frequencies, sampling rates are measured in hertz.

EThe precision in which a sample represents the actual
amplitude of the waveform at the instant the sample is taken
depends on the sample size or number of bits (also called bit
depth) used in the binary representation of the amplitude
value.

EAn 8-bit sample can resolve 256 (=28) different amplitude or
voltage values -- 40,000 bytes/second

EA 16-bit converter can resolve 65,536 (=26) values -- 80,000
bytes/second

ESound recorded on audio CDs is stored as 16-bit samples.

EWhen a sample is taken, the actual value is rounded to the
nearest value that can be represented by the number of bits
in a sample.
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Analog to Digital -- Sampling

EThe minimum amount of storage (in bytes)

required for a digitized signal is the product of
Bthe sample rate (in samples/sec),
Ethe sample size (in bytes; one byte equals 8 bits),
Band the signal duration (seconds).

EThe CD standard sampling rate of 44.1 kHz means
that the waveform is sampled 44100 times per
second.

EThus, a 10-second signal sampled at 44.1 kHz with
16-bit (2-byte) precision requires 882,000 bytes (=
10 sec x 44,100 samples/sec x 2 bytes/sample), or
about 861 Kbytes of storage (1 Kbyte = 1024
bytes).

Introduction to Information Representations 124
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Audio Formats

L} MIDI

® Musical Instrument Digital Interface is not technically an audio format,
but it has recently become predominant as one of the main methods
for delivering audio over the Internet. This is due to the fact that the
file size are tiny compared to any other audio formats. The beauty
behind MIDI files is the fact that it only save the data on what notes
the instrument should play rather than the whole complex structure of
sound waves.

B WAV

e This format has become the standard audio format for sound files on
the Internet. Almost every browser has built-in WAV playback support.
The default Windows WAV format is PCM, which is basically
uncompressed sound data, and these files tend to be rather large.
However, many forms of compressed WAV files are available.

B MPEG (Layer 3)

e This is latest of MPEG audio coding. It achieves high-fidelity sound
quality, with a significant reduction in file size. It can shrink down CD
audio by a factor of 12, without losing any clarity and quality. The
encoded file are small enough to be transmitted at today’s Internet
speeds, this is one of the main reasons why mp3'’s are attracting so
many users in the Internet community.
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