

Nibbles			
Nibbles		BCD	Hex
Middles	0000	0	0
A nibble is a group of 4	0001	1	1
hite	0010	2	2
DITS	0011	3	3
A nibble is used to	0100	4	4
represent a digit in	0101	5	5
	0110	6	6
Hex (from 0-15) and	0111	7	7
BCD (Binary-Coded	1000	8	8
Decimal) (from (0.9)	1001	9	9
	1010		A
numbers	1011		В
	1100		с
	1101		D
	1110		E
	1111		F

Unsigne	d I	Binar	y Cc	ode		
Use for re signed	epr (n	esenting atural n	g inte umbe	gers wit rs)	hout	
	0	0000	8	1000		
	1	0001	9	1001		
	2	0010	10	1010		
	3	0011	11	1011		
	4	0100	12	1100		
	5	0101	13	1101		
	б	0110	14	1110		
	7	0111	15	1111		
CS 2401 Comp. Org. & Assembly		Data Represen Systems	itation in Co Chapter	mputer 2		14

What is representation of 79 ₁₀ in binary?	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
---	--

Decimal to Binary	Decimal to Binary Conversion		
Using the multiplication method to convert the decimal 0.8125 to binary, we multiply by the radix 2.	$.8125$ $\times 2$ 1.6250		
 The first product carries into the units place. 			
CS 2401 Comp. Org. & Data Representation in Assembly Systems Chapt	Computer er 2	27	

Decimal to Binary	Conversion
 Converting 0.8125 to binary Ignoring the value in the units place at each step, continue multiplying each fractional part by the radix. 	$ \begin{array}{r} .8125 \\ \times 2 \\ 1.6250 \\ .6250 \\ \times 2 \\ 1.2500 \\ .2500 \\ \times 2 \\ 0.5000 \\ \end{array} $
CS 2401 Comp. Org. & Data Representation in C Assembly Systems Chapte	computer 28 r 2

Examples of S Magnitude	igned &	
Decimal	5-bit Sign and Magnitude	
+5	00101	
-5	1 0101	
+13	<mark>0</mark> 1101	
-13	<mark>1</mark> 1101	
CS 2401 Comp. Org. & Data Repre Assembly Syste	sentation in Computer :	35

Signed a	an	d Mag	gnitu	de in 4 bits	;
	0	0000	-0	1000	
	1	0001	-1	1001	
	2	0010	-2	1010	
	3	0011	-3	1011	
	4	0100	-4	1100	
	5	0101	-5	1101	
	6	0110	-6	1110	
	7	0111	-7	1111	
05 2401 Come Ore A		Data Danasa			24
Assembly		Systems	Chapter 2	uter	30

Examples of 7	1's Complement
Decimal	5-bit 1's complement
5	00101
-5	11010
13	<mark>01101</mark>
-13	10010
CS 2401 Comp. Org. & Data Re Assembly Sy	presentation in Computer 39 stems Chapter 2

1's Comj	ple	ement	in 4	bits	
	0	0000	-0	1111	
	1	0001	-1	1110	
	2	0010	-2	1101	
	3	0011	-3	1100	
	4	0100	-4	1011	
	5	0101	-5	1010	
	6	0110	-6	1001	
	7	0111	-7	1000	
CS 2401 Comp. Org. & Assembly		Data Representati Systems	ion in Computer Chapter 2	-	40

Examples of a	2's Complement
Decimal	5-bit 2's complement
5	00101
-5	11011
13	<mark>01101</mark>
-13	10011
CS 2401 Comp. Org. & Data Re	epresentation in Computer 43

2's Com	ple	emen	t in 4	bits	
	0	0000	-1	1111	
	1	0001	-2	1110	
	2	0010	-3	1101	
	3	0011	-4	1100	
	4	0100	-5	1011	
	5	0101	-6	1010	
	б	0110	-7	1001	
	7	0111	-8	1000	
CS 2401 Comp. Org. &	•	Data Represent	ation in Comp	uter	4

Decimal
4 + 1 = 5
$4 + 1 = 5 \rightarrow -5$
8 + 4 + 1 = 13
$8+4+1=13\rightarrow -13$

Binary	Hex
1111 0110 <mark>b</mark>	F6h
1001 1101 0000 1010 <mark>b</mark>	9D0Ah
1111 0110 1110 0111 <mark>b</mark>	F6E7 <mark>h</mark>
1011011b	5Bh

	0		
(a)	5	0101	
	+2	+0010	
	1	UIII	
(b)	- 5	1101	
	-2	+1010	
	-7	1111	
(c)	5	0101	
	-2	+1010	
	3	0011	
(4)	- 5	1101	
(u)	+2	+0010	
		1011	

Overflow Condition	ons	
Carry-in ≠ carry-out		
0111	1000	
5 0101	-5 1011	
+3 +0011	-4 +1100	
-8 1000	7 10111	
Carry-in = carry-out		
0000	11 10	
+5 0101	-2 1110	
+2 +0010	-6 +1010	
7 0111	-8 11000	

Signed II	neger	кер	resent	tation
Signed number unsigned num overflow flag.	er overflow hbers, which	means r n set a ca	nothing in th arry flag ins	ne context of stead of an
 If a carry out number, over Carry and ove 	flow has oc erflow occur	curred.	idently of e	ach other.
 If a carry out number, over Carry and ove Expression 	flow has oc erflow occur	curred. indeper	occurs with idently of e	ach other.
If a carry out number, over Carry and over Expression D100 (+4) +0010 (+2)	Result	Carry?	Overflow?	ach other.
If a carry out number, over Carry and ove Expression 2100 (+4) +0010 (+2) 100 (+4) +0110 (+6)	Result 0110 (+6) 1010 (-6) 1010 (-6)	Carry?	Overflow?	ach other.
 If a carry out number, over Carry and over Expression D100 (+4) +0010 (+2) D100 (+4) +0110 (+6) D100 (-4) +1110 (-2) 	Result 0110 (+6) 1010 (-6)	Carry?	Overflow?	ach other.

Signed Integer	Representation
0011 (3)	1011 (-5)
<u>× 0110</u> (6)	<u>× 1100</u> (-4)
+ 0000	+ 0000
+ 0011	+ 0000
+ 0011	+ 1011
+ 0000	+ 1011
00010010 (18)	10000100 (-124)
	62

Si	igr	ned	Integer Rep	presentation
a _i	a _{i-1}	$a_{i-1} - a_i$	Operation	0011
0	0	0	in middle of string 0. No operation.	× 01100
0	1	1	end of string 1. Add multiplicand.	+0000000
1	0	-1	beginning of string 1. Subtract multiplicand.	+0110011
1	1	0	in middle of string 1. No operation.	+000000
			•	+ <mark>0</mark> 0011
			Ignore all bits over	2n. 100010010
				65

Signed Integer Representation	
eigned integer representation	
1101 (-3) 0011 (+3)	
<u>× 1100</u> (-4)	
+ 0000000	
+ 0000000	
+ 000001	
+ 00000	
00001100 (+12)	
66	

Signed Intege	r Representation
-53 Ignore all bits over 2n.	00110101 (53) × 0111110 (126) + 00000000000000 + 11111111001011 + 0000000000000 + 00000000000 + 0000000000
	67

	кер	res	senta		1
0101 (+5)	$a_{1} - a_{2}$	Action	Regi	ster	Carry
<u>× 1100</u> (-4)	(-) (0000	1100	0
+ 00000000	00	rshf	0000	0110	0
+ 0000000	00	rshf	0000	0011	0
+ 111011	10	sub rshf	+1011 1101	0011 1001	0 1
+ 00000	11	rshf	1110	1100	1
+ 00000	11	rshf	1110	1100	1
+ 00000 11101100 (-20)					

		ger ne		
$a_{i-1} - a_i$	Action	Regi	ster	Carry
		0000000	1011110	0
00	rshf	000000	0101111	0
10	sub rshf	+1101010 1110101	0101111 0010111	1
11	rshf	1111010	1001011	1
11	rshf	1111101	0100101	1
11	rshf	1111110	1010010	1
01	add rshf	+0010110 0010100 0001010	1010010 0101001	0
10	sub rshf	+1101010 1110100 1111010	0101001	1

Floating-Point	Representation
Floating Point Number	Single Precision Representation
1.0	0 01111111 0000000000000000000000000000
0.5 Is this correct?	0 1000000 00000000000000000000000000000
19.5	0 10000011 0011100000000000000000000000
-3.75	1 10000000 1110000000000000000000000000
Zero	0 0000000000000000000000000000000000000
+ Infinity	0/1 11111111 00000000000000000000000000
NaN	0/1 11111111 any non-zero significand
Denormalized Number	0/1 00000000 any non-zero significand

Flo	oating	Point	Struc	ture		
	oating					
	The Mar	ntissa				
	• The /	mantissa	also	known	as	the
	cianific					
		·	IN DUDINU	$1 n \Delta n r \Delta$	ricinn r	nite
	of the	and, rep	presents	the pre	cision i cod of	oits
	of the	numbe	er. It is	compos	cision is sed of	an
	of the implicit	numbe t leading	er. It is the sented by bit and	compositive fraction	sed of tion bits	an s.
	of the	numbe numbe t leading	bresents er. It is bit and Exponent	the pre compos the frac Mantissa	ed of tion bits	an s.
	of the implicit	numbe numbe t leading Sign	Exponent	the pre compos the frac Mantissa 23	Bias	an s.
	of the implicit Single Double	numbe t leading Sign 1	Exponent 8 11	Mantissa	Bias 127	an s.

Example)	
45.5 ⇒ 45 =	= 101101	
0.5	5 = 1/2 = .1	
45.5		
= 101101.1	= 1.011011 × 2 ⁵	
= 0 1000 01	100 0110110000000	000000000
= 0100 001 0000	0 0011 0110 0000 00	000 0000
= 42 36 00	0 0	

Systems -- Chapter 2

Assembly

Example	
-11.25 ⇒ 1 = 1011	
0.25 = 1/4 = .01	
-11.25	
$= -1011.01 = -1.01101 \times 2^{3}$	
= 1 1000 0010 0110100000000000000000000	0000
= 1100 0001 0011 0100 0000 0000 000 0000	0
= C1 34 00 0 0	

ASCII Code in Binary and Hex				
Character	Binary	Hex		
А	0100 0001	41		
D	0100 0100	44		
a	0110 0001	61		
?	0011 1111	3f		
2	0011 0010	32		
DEL	0111 1111	7F		
CS 2401 Comp. Org. & Data Assembly	Representation in Computer Systems Chapter 2	1		

ASCII Groups			
Bit 6	Bit 5	Group	
0	0	Control Character	
0	1	Digits & Punctuation	
1	0	Upper Case & Special	
1	1	Lower Case & Special	
CS 2401 Comp. Org. & Assembly	Data Represent Systems	ation in Computer 115 Chapter 2	

SCII Codes for Numeric Digits			
Character	Decimal	Hexadecimal	
0	48	30	
1	49	31	
2	50	32	
3	51	33	
4	52	34	
5	53	35	
6	54	36	
7	55	37	
8	56	38	
9	57	39	

Repr Disp	esenting Colors on a Video lay	
	An image is composed pixels (Picture elemen Different display modes use different data epresentations for each pixel A mixture of red, green, and blue form a spec- color on the display <i>Color depth</i> describes amount of each red, green, and blue for a mixture on a pixel 8, or 24 bits 24-bit display, each color has 256 different shades 6-bit display, each color has 5 or 6 bits of shades 8-bit display, each color has 2 or 3 bits of shades	ts) cific 16,
CS 2401 Cor Assembly	np. Org. & Data Representation in Computer Systems Chapter 2	118

epres	sent	ing Color	s on a Video	
ispla	y			
	5			
B	Bit-Depth	Number of Colors	Туре	
1		2	monochrome	
2		4	CGA	
4		16	EGA	
8		256	VGA	
1	6	65,536	High Color, XGA	
	4	16,777,216	True Color, SVGA	
2				

Analog t	o Digital Sampl	ing
 Sampling is dor fractions of a set Like frequencies The precision in amplitude of the depth used in twalue. An 8-bit sample voltage values A 16-bit conver bytes/second Sound recorded When a sample nearest value the in a sample 	the at regular intervals of time, ofter econd. s, sampling rates are measured in h which a sample represents the act e waveform at the instant the samp sample size or number of bits (also the binary representation of the am can resolve 256 (=2 ⁸) different an 40,000 bytes/second ter can resolve 65,536 (=2 ¹⁶) value on audio CDs is stored as 16-bit sa is taken, the actual value is rounden tat can be represented by the number of the same second to the actual value is rounden to a second to the actual value is rounden to a second to the same second to the same ter can be represented by the number of the same second to the same second to the same second to the same ter can be represented by the number of the same second to t	n small hertz. ual ble is taken b called bit plitude hplitude or es 80,000 amples. ed to the ber of bits

