
1

Data RepresentationData Representation

in
Computer Systems

CS 2401 Comp. Org.
& Assembly

Data Representation in Computer
Systems -- Chapter 2

1

OutlineOutline
Data Organization

Bits, Nibbles, Bytes, Words, Double Words
bNumbering Systems

Unsigned Binary System
Signed and Magnitude System
1’s Complement System
2’s Complement System
Hexadecimal System

Floating Point Representation
BCD Representation
Characters

ASCII Code

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

2

ASCII Code
UNICODE

Other Representations
Display colors
Audio

Data OrganizationData Organization
Computers use binary number system

t t i f ti 0’ d 1’to store information as 0’s and 1’s

Bits
A bit is the fundamental unit of computer
storage
A bit can be 0 (off) or 1 (on)

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

3

Related bits are grouped to represent
different types of information such as
numbers, characters, pictures, sound,
instructions

NibblesNibbles
Nibbles BCD Hex

0000 0 0

A nibble is a group of 4
bits
A nibble is used to
represent a digit in
Hex (from 0-15) and
BCD (Binary-Coded
Decimal) (from 0-9)

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

4

Decimal) (from 0 9)
numbers

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

2

BytesBytes
Bytes

A bytebyte is a group of 8 bits that is used to
represent numbers and characters

A standard code for representing

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

5

A standard code for representing
numbers and characters is ASCII
(AAmerican SStandard CCode for
IInformation IInterchange)

Byte SizeByte Size
Bytes

How many different combinations of 0’s
and 1’s with 8 bits can form?
In general, how many different
combinations of 0’s and 1’s with N bits
can form?
H diff t h t th t

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

6

How many different characters that a
byte (8 bits) can represent?

WordsWords
Words

A word is a group of 16 bits or 2 bytes that is
used to represent non-Roman characters in
UNICODE

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

7

An international standard code for representing
non-Roman characters like Asian, Greek, and
Russian characters is UNICODE

Double WordsDouble Words
Double Words

A double word is a group of 32 bits or 4
bytes or 2 words

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

8

3

Related BytesRelated Bytes
A nibblenibble is a half-byte (4-bit) - hex representation
A wordword is a 2-byte (16-bit) data item
A doubleworddoubleword is a 4-byte (32-bit) data item
A quadwordquadword is an 8-byte (64-bit) data item
A paragraphparagraph is a 16-byte (128-bit) area
A kilobytekilobyte (KB) is 210 = 1,024 bytes  1 K bytes)
A megabytemegabyte (MB) is 220 = 1,048,576  1 MB
A GigabyteGigabyte (GB) is 230 = 1 073 741 824 1 GB

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

9

A GigabyteGigabyte (GB) is 230 = 1,073,741,824  1 GB
A TerabyteTerabyte (TB) is 240 = 1,099,511,627,776  1 TB

Numbering SystemsNumbering Systems

Unsigned number system
Signed binary Systems

Signed and magnitude system
1’s complement system
2’s complement system

Hexadecimal system

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

10

Hexadecimal system

base 10 -- has ten digits:

Binary Number SystemBinary Number System

0,1,2,3,4,5,6,7,8,9
positional notation

2401 = 2 103 + 4 102 + 0 101 + 1 100

base 2 -- has two digits: 0 and 1
positional notationpositional notation

11012 = 1  23 + 1  22 + 0  21 + 1  20

= 8 + 4 + 0 + 1 = 13

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

11

Binary Positional NotationBinary Positional Notation

If

N = bn -1b n -2  b1b0

then

N = bn -1  2n - 1 + bn - 2  2n -2 + +

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

12

b0  20

4

Positional Positional Notation Notation –– Convert base Convert base
2 2 or or 16 16 to to base base 1010
Position ... 4 3 2 1 0

104 103 102 101 100
Positional Value

... 10 10 10 10 10

... 10000 1000 100 10 1
2 4 0 1

21000+ 4100+ 010 + 11 = 240110

Position ... 8 7 6 5 4 3 2 1 0
Positional
Value

... 28 27 26 25 24 23 22 21 20

... 256 128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

Introduction to
Computer Technology

Information Representations 13

... 256 128 64 32 16 8 4 2 1

1 0 1 1 0
16 + 0 + 4 + 2 + 0 = 22

BinHex Application --
http://cms.dt.uh.edu/faculty/ongards/links/links.php?id=1

Unsigned Binary CodeUnsigned Binary Code
Use for representing integers without

i d (l b)signed (natural numbers)
0 0000 8 1000

1 0001 9 1001

2 0010 10 1010

3 0011 11 1011

4 0100 12 1100

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

14

4 0100 12 1100

5 0101 13 1101

6 0110 14 1110

7 0111 15 1111

Number of Bits Required in Number of Bits Required in
Unsigned Binary CodeUnsigned Binary Code

What is the range of values that can
be represented with n bits in the
Unsigned Binary Code?

[0, 2n-1]
How many bits are required to

t i b N i

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

15

represent a given number N in
decimal?

Min. Number of Bits = log2(N+1)

Decimal to Binary ConversionDecimal to Binary Conversion

Suppose we want to convert
the decimal number 190 tothe decimal number 190 to
base 3.

We know that 35 = 243
so our result will be less
than six digits wide.
The largest power of 3
that we need is
therefore 3 4 = 81, and
81  2 = 162.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

16

81  2 162.
Write down the 2 and
subtract 162 from 190,
giving 28.

5

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...

Th t f 3 i The next power of 3 is
3 3 = 27. We’ll need one
of these, so we subtract
27 and write down the
numeral 1 in our result.
The next power of 3, 3 2

= 9, is too large, but we
h t i

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

17

have to assign a
placeholder of zero and
carry down the 1.

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...
3 1 = 3 is again too 3 1 = 3 is again too
large, so we assign a
zero placeholder.
The last power of 3, 3
0 = 1, is our last
choice, and it gives us
a difference of zero.
Our result reading

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

18

Our result, reading
from top to bottom is:

19010 = 210013

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...
First we take the First we take the
number that we wish
to convert and divide
it by the radix in
which we want to
express our result.
In this case, 3
divides 190 63
times with a

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

19

times, with a
remainder of 1.
Record the quotient
and the remainder.

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...

63 is evenly divisible
by 3.
Our remainder is
zero, and the
quotient is 21.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

20

6

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...

C ti i thi Continue in this way
until the quotient is
zero.
In the final calculation,
we note that 3 divides
2 zero times with a
remainder of 2.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

21

Our result, reading
from bottom to top is:

19010 = 210013

Successive division by Successive division by 22
What is 2 792 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1representation of
7910 in binary?

2 39 12 39 1
2 19 1

2 39 1
2 19 1

2 9 1

2 39 1
2 19 1

2 9 1
2 4 1

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0
2 1 0

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0
2 1 0

0 1

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0
2 1 0

0 1

Introduction to
Computer Technology

Information Representations 22

0 10 1
Therefore 7910= 1011112

Reverse Positional NotationReverse Positional Notation
Positional
Value 512 256 128 64 32 16 8 4 2 1Positional
Value 512 256 128 64 32 16 8 4 2 1

1

Positional
Value 512 256 128 64 32 16 8 4 2 1

1 1

Positional
Value 512 256 128 64 32 16 8 4 2 1

1 1 1

Positional
Value 512 256 128 64 32 16 8 4 2 1

1 1 1 1

Positional
Value 512 256 128 64 32 16 8 4 2 1

1 1 1 1 1

Positional
Value 512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 1

Positional
Value 512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 1

79 - 64 = 15 15 - 8 = 7 3 - 2 = 1

11 11 1 1

7 - 4 = 3

1 1 1 11 1 1 1 11 0 0 1 1 1 11 0 0 1 1 1 1
64 + 0 + 0 + 8 + 4 + 2 + 1 = 79

Since
2 < 3

Since
4 < 7

Since
64 < 79

Since
8 < 15

Introduction to
Computer Technology

Information Representations 23

BinHex Application --
http://cms.dt.uh.edu/faculty/ongards/links/links.php?id=1

Decimal to Binary ConversionDecimal to Binary Conversion
Fractional decimal values have nonzero digits to the
right of the decimal point.right of the decimal point.
Fractional values of other radix systems have
nonzero digits to the right of the radix point.
Numerals to the right of a radix point represent
negative powers of the radix:

0.471010 = 4  10 -1 + 7  10 -2 + 1  10 -3

0 1102 = 1  2 -1 + 1  2 -2

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

24

0.1102 = 1  2 + 1  2
= ½ + ¼
= 0.5 + 0.25 = 0.75

7

Decimal to Binary ConversionDecimal to Binary Conversion
As with whole-number conversions, you can use
either of two methods: a subtraction method either of two methods: a subtraction method
and an easy multiplication method.
The subtraction method for fractions is identical
to the subtraction method for whole numbers.
Instead of subtracting positive powers of the
target radix, we subtract negative powers of the
radix.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

25

We always start with the largest value first, n -
1, where n is our radix, and work our way along
using larger negative exponents.

Decimal to Binary ConversionDecimal to Binary Conversion
The calculation to the right
is an example of using the p g
subtraction method to
convert the decimal 0.8125
to binary.

Our result, reading
from top to bottom
is:

0.812510 =
0 1101

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

26

0.11012

Of course, this
method works with
any base, not just
binary.

Decimal to Binary ConversionDecimal to Binary Conversion
Using the
multiplication methodmultiplication method
to convert the decimal
0.8125 to binary, we
multiply by the radix 2.

The first product
carries into the

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

27

units place.

Decimal to Binary ConversionDecimal to Binary Conversion
Converting 0.8125 to
binarybinary . . .

Ignoring the value
in the units place at
each step, continue
multiplying each
fractional part by
the radix.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

28

8

Decimal to Binary ConversionDecimal to Binary Conversion
Converting 0.8125 to binary . . .

You are finished when the You are finished when the
product is zero, or until
you have reached the
desired number of binary
places.
Our result, reading from
top to bottom is:

0.812510 = 0.11012
Thi th d l k

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

29

This method also works
with any base. Just use
the target radix as the
multiplier.

Decimal to Binary ConversionDecimal to Binary Conversion
The binary numbering system is the most important radix
system for digital computerssystem for digital computers.
However, it is difficult to read long strings of binary
numbers-- and even a modestly-sized decimal number
becomes a very long binary number.

For example:
110101000110112 = 1359510

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

30

For compactness and ease of reading, binary values are
usually expressed using the hexadecimal, or base-16,
numbering system.

Unsigned ConversionUnsigned Conversion

Convert an unsigned binary number
to decimal
use positional notation (polynomial

expansion)

Convert a decimal number to
unsigned Binary

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

31

unsigned Binary
use successive division by 2

ExamplesExamples

Represent 2610 in unsigned Binary
Code

2610 = 110102

Represent 2610 in unsigned Binary
Code using 8 bits

26 00011010

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

32

2610 = 000110102
Represent (26)10 in Unsigned Binary
Code using 4 bits -- not possible

9

Signed Binary CodesSigned Binary Codes
These are codes used to represent

positive and negative numbers.
Signed and Magnitude System
1’s Complement System
2’s Complement System

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

33

Signed and MagnitudeSigned and Magnitude

The most significant (left most) bit
represent the sign bit

0 is positive
1 is negative

The remaining bits represent the
magnitude

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

34

magnitude

Examples of Signed & Examples of Signed &
MagnitudeMagnitude

D i l 5-bit SignDecimal 5 bit Sign
and Magnitude

+5 00101

-5 10101

13 01101

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

35

+13 01101

-13 11101

Signed and Magnitude in Signed and Magnitude in 4 4 bitsbits

0 0000 -0 1000

1 0001 -1 1001

2 0010 -2 1010

3 0011 -3 1011

4 0100 -4 1100

5 0101 -5 1101

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

36

6 0110 -6 1110

7 0111 -7 1111

10

ExamplesExamples

D i l Si d 8 bit Si dDecimal Signed 8-bit Signed

2610 0110102 000110102

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

37

-2610 1110102 100110102

11’s Complement System’s Complement System

Positive numbers:
same as in unsigned binary system
pad a 0 at the leftmost bit position

Negative numbers:
convert the magnitude to unsigned
binary system

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

38

y y
pad a 0 at the leftmost bit position
complement every bit

Examples of Examples of 11’s Complement’s Complement

D i l 5 bi 1’ lDecimal 5-bit 1’s complement

5 00101

-5 11010

13 01101

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

39

13 01101

-13 10010

11’s Complement in ’s Complement in 4 4 bitsbits

0 0000 -0 11110 0000 0 1111

1 0001 -1 1110

2 0010 -2 1101

3 0011 -3 1100

4 0100 -4 1011

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

40

5 0101 -5 1010

6 0110 -6 1001

7 0111 -7 1000

11

D i l Si d 8 bit Si d

ExamplesExamples

Decimal Signed 8-bit Signed

2610 0110102 000110102

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

41

-2610 1001012 111001012

22’s Complement System’s Complement System

Positive numbers:
same as in unsigned binary system
pad a 0 at the leftmost bit position

Negative numbers:
convert the magnitude to unsigned
binary system
pad a 0 at the leftmost bit position

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

42

pad a 0 at the leftmost bit position
complement every bit
add 1 to the complement number

Examples of Examples of 22’s Complement’s Complement

D i l 5 bi 2’ lDecimal 5-bit 2’s complement

5 00101

-5 11011

13 01101

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

43

13 01101

-13 10011

22’s Complement in ’s Complement in 4 4 bitsbits

0 0000 -1 1111

1 0001 -2 1110

2 0010 -3 1101

3 0011 -4 1100

4 0100 -5 1011

5 0101 6 1010

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

44

5 0101 -6 1010

6 0110 -7 1001

7 0111 -8 1000

12

ExamplesExamples

D i l Si d 8 bit Si dDecimal Signed 8-bit Signed

2610 0110102 000110102

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

45

-2610 1001102 111001102

More ExamplesMore Examples

Represent 65 in 2’s complement

65 = 0100 00012

Represent -65 in 2’s complement
-65 = 1011 11112

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

46

Convert Convert 22’s Complement to decimal’s Complement to decimal

Positive 2’s complement numbers
convert the same as in unsigned binary

Negative 2’s complement numbers
complement the 2’s complement number
add 1 to the complemented number
convert the same as in unsigned binary

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

47

ExamplesExamples

2’s complement Decimal2 s complement Decimal

00101 4 + 1 = 5

11011  00100 + 1 4 + 1 = 5  -5

01101 8 + 4 + 1 = 13

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

48

01101 8 + 4 + 1 = 13

10011  01100 + 1 8 + 4 + 1 = 13  -13

13

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

49

Mathematical FormulaMathematical Formula
Formula to convert a decimal number
t 1’ l t to a 1’s complement --

N' = 2n - N - 1
Formula to convert a decimal number
to a 2’s complement --

N' = 2n - N

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

50

where N is the binary number
representing the decimal with n
number of bits

Hexadecimal NotationHexadecimal Notation

base 16 -- has 16 digits:
0 1 2 3 4 5 6 7 8 9 A B C D E F

each Hex digit represents a group of
4 bits (i.e. half of a byte or a nibble)
0000 to 1111
use as a shorthand notation for

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

51

use as a shorthand notation for
convenient

Convert Binary HexConvert Binary Hex

Binary HexBinary Hex

1111 0110b F6h

1001 1101 0000 1010b 9D0Ah

1111 0110 1110 0111b F6E7h

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

52

1011011b 5Bh

14

ExamplesExamples
ASCII value of character ‘D’ in Hex

D = 0100 0100bASCII = 44hASCII

Represent 37d in 2’s complement using Hex.
37d = 010 0101b2’s = 0010 0101b2’s

= 25h2’s

Represent -37d in 2’s complement using Hex.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

53

p p g

-37d = 101 1011b2’s = 1101 1011b2’s = DBh2’s

Convert Hex DecimalConvert Hex Decimal
Convert Hex to decimal

use positional (polynomial expansion) notation
3BAh = 3  162 + B  161 + A  160

= 3  256 + 11  16 + 10  1 = 954d
Convert decimal to Hex

Use successive divisions by 16
359/16 22 R 7,

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

54

359/16 22 R 7,
22/16 1 R 6,
1/16 0 R 1

359d = 167h

Covert Large Binary to DecimalCovert Large Binary to Decimal
Convert 1001 0011 0101 1100b to decimal

Method 1:
Use polynomial expansion methods

Method 2:
Convert number to hex, then convert it
to decimal.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

55

o dec a
1001 0011 0101 1100b = 935Ch

935Ch = 37724d

Addition and Subtraction in Addition and Subtraction in
Signed and MagnitudeSigned and Magnitude

(a) 5
+2

 0101
+0010

7 0111

(b) -5
-2

 1101
+1010

-7 1111

(c) 5
-2

 0101
+1010

3 0011

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

56

3 0011

(d) -5
+2

 1101
+0010

-3 1011

15

Addition and Subtraction in Addition and Subtraction in
11’s Complement’s Complement

(a) 5
+2

 0101
+0010

7 01117 0111

(b) -5
-2

 1010
 +1101

-7 1 0111
 1
 1000

(c) 5
-2

 0101
 +1101

3 1 0010

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

57

3 1 0010
 1
 0011

(d) -5
+2

 1010
 +0010

-3 1100

Addition and Subtraction inAddition and Subtraction in
22’s Complement’s Complement

(a) 5
+2

 0101
+001000 0

7 0111

(b) -5
-2

 1011
 +1110

-7 1 1001

(c) 5
-2

 0101
 +1110

3 1 0011

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

58

3 1 0011

(d) -5
+2

 1011
 +0010

-3 1101

Theoretical Facts Theoretical Facts
Why is the carry out from adding 1’s
complements added to the sum?

N1' = 2n – N1 – 1 and N2' = 2n – N2 – 1

Why is the carry out from adding 2’s
complements dropped?

' d '

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

59

N1' = 2n – N1 and N2' = 2n – N2

Overflow ConditionsOverflow Conditions
Carry-in  carry-out

0111 1000
5 0101 -5 1011

+3 +0011 -4 +1100
-8 1000 7 10111

Carry-in = carry-out
0000 1110
0101 2 1110

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

60

+5 0101 -2 1110
+2 +0010 -6 +1010
7 0111 -8 11000

16

Signed Integer RepresentationSigned Integer Representation
Overflow and carry are tricky ideas.
Signed number overflow means nothing in the context of Signed number overflow means nothing in the context of
unsigned numbers, which set a carry flag instead of an
overflow flag.
If a carry out of the leftmost bit occurs with an unsigned
number, overflow has occurred.
Carry and overflow occur independently of each other.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

61

Signed Integer RepresentationSigned Integer Representation
0011 (3) 1011 (-5)

 0110 (6)

+ 0000

+ 0011

+ 0011

 1100 (-4)

+ 0000

+ 0000

+ 1011

62

+ 0011

+ 0000____

00010010 (18)

+ 1011

+ 1011____

10000100 (-124)

Signed Integer RepresentationSigned Integer Representation
Example:
98765 1001 98765 (1000 + 1)98765  1001 = 98765 (1000 + 1)

= 98765  1000 + 98765
98765  999 = 98765(1000 - 1)

= 98765  1000 – 98765
Example:
0011  0110 = 0011 (1000 - 0010)

= 0011  1000 0011  0010= 0011  1000 – 0011  0010

63

Signed Integer RepresentationSigned Integer Representation
Booth’s Algorithm

Fast multiplicationFast multiplication
Signed multiplication

In Booth’s algorithm, the first 1 in a string of 1s in the

multiplier is replaced with a subtraction of the

multiplicand.
Shift the partial sums until the last 1 of the string is Shift the partial sums until the last 1 of the string is
detected.
Then add the multiplicand.

64

17

001100110011001100110011

Signed Integer RepresentationSigned Integer Representation
ai ai-1 ai-1  ai Operation

 0110

+ 0000

+ 1101

+ 0000

 0110

+00000000

-0000011

+ 0000

 0110

+00000000

-0000011

+000000

 0110

+00000000

-0000011

+000000

 01100

+00000000

- 0011

+ 0000

 0110

+00000000

+1111101

+000000

0 0 0 in middle of string 0.
No operation.

0 1 1 end of string 1.
Add multiplicand.

1 0 1
beginning of string 1.
Subtract
multiplicand.
in middle of string 1 + 0000

+ 0011____

00010010

+ 0000

+ 0011____

00010010

+000000

+ 0011____

00010010

+000000

+00011____

00010010

+ 0000

+ 0011____

00010010

+000000

+00011____

100010010Ignore all bits over 2n.

1 1 0 in middle of string 1.
No operation.

65

1101 (-3) 0011 (+3)

Signed Integer RepresentationSigned Integer Representation
1101 (-3) 0011 (+3)

 1100 (-4)

+ 00000000

+ 0000000

+ 000011

 1100 (-4)

+ 00000000

+ 0000000

- 111101+ 000011

+ 00000___

00001100 (+12)

111101

+ 00000___

66

Signed Integer RepresentationSigned Integer Representation

00110101 (53)
 01111110 (126)

+ 0000000000000000
+ 111111111001011
+ 00000000000000
+ 0000000000000
+ 000000000000
00000000000

53

67

+ 00000000000
+ 0000000000
+ 000110101_______
10001101000010110Ignore all bits over 2n.

Signed Integer RepresentationSigned Integer Representation
0101 (+5)

 1100 (-4)

+ 00000000

+ 0000000

+ 111011

ai-1  ai Action Register Carry

0000 1100 0

00 rshf 0000 0110 0

00 rshf 0000 0011 0

10 sub
rshf

+1011
1101

0011
1001

0
1+ 111011

+ 00000___

11101100 (-20)

11 rshf 1110 1100 1

68

18

Signed Integer RepresentationSigned Integer Representation
0010110 (+22) 1101010(-22)

 1011110 (-34)

+ 00000000000000

+ 1111111101010

+ 000000000000

+ 00000000000

+ 0000000000

+ 000010110

+ 11101010

111110100010100 (-748)
69

Signed Integer RepresentationSigned Integer Representation
ai-1  ai Action Register Carry

0000000 1011110 00000000 1011110 0

00 rshf 0000000 0101111 0

10 sub
rshf

+1101010
1110101

0101111
0010111

1

11 rshf 1111010 1001011 1

11 rshf 1111101 0100101 1

11 rshf 1111110 1010010 1

01 add
rshf

+0010110
0010100
0001010

1010010
0101001

0

10 sub
rshf

+1101010
1110100
1111010

0101001
0010100

1

70

Addition and Subtraction inAddition and Subtraction in
Hexadecimal SystemHexadecimal System

(9F1B)16 -(4A36)16 : 16

(9F1B)16 +(4A36)16 : 1 1
 9F1B+ 4A36
 E951

Addition

Subtraction

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

71

(9F1B)16 (4A36)16 : 16
 9F1B- 4A36
 54E5

FloatingFloating--Point RepresentationPoint Representation
Floating-point numbers allow an
arbitrary number of decimal places to
the right of the decimal point.

For example: 0.5  0.25 = 0.125
They are often expressed in scientific
notation.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

72

otat o
For example:

0.125 = 1.25  10-1

5,000,000 = 5.0  106

19

FloatingFloating--Point RepresentationPoint Representation
Computers use a form of scientific notation
f fl i i i for floating-point representation
Numbers written in scientific notation have
three components:

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

73

FloatingFloating--Point RepresentationPoint Representation
Computer representation of a
fl ti i t b i t f floating-point number consists of
three fixed-size fields:

This is the standard arrangement of
these fields.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

74

FloatingFloating--Point RepresentationPoint Representation

The one-bit sign field is the sign of the stored value.
The size of the exponent field, determines the range

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

75

p , g
of values that can be represented.
The size of the significand determines the precision of
the representation.

FloatingFloating--Point RepresentationPoint Representation

The IEEE-754 single precision floating point standard
uses an 8-bit exponent and a 23-bit significand.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

76

The IEEE-754 double precision standard uses an 11-
bit exponent and a 52-bit significand.

p g
For illustrative purposes, we will use a 14-bit model
with a 5-bit exponent and an 8-bit significand.

20

FloatingFloating--Point RepresentationPoint Representation

The significand of a floating-point number is always
preceded by an implied binary point.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

77

Thus, the significand always contains a fractional
binary value.
The exponent indicates the power of 2 to which the
significand is raised.

FloatingFloating--Point RepresentationPoint Representation
Example:

Express 3210 in the simplified 14-bit floating-point modelExpress 3210 in the simplified 14 bit floating point model.
We know that 32 is 25. So in (binary) scientific notation
32 = 100000 = 1.0 x 25 = 0.1 x 26.
Using this information, we put 110 (= 610) in the
exponent field and 1 in the significand as shown.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

78

FloatingFloating--Point RepresentationPoint Representation
The illustrations shown
at the right are all at the right are all
equivalent
representations for 32
using our simplified
model.
Not only do these
synonymous

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

79

representations waste
space, but they can
also cause confusion.

FloatingFloating--Point RepresentationPoint Representation

Another problem with our system is that we have
made no allowances for negative exponents. We have
no a to e p ess 0 5 (2 1)! (Notice that the e is no

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

80

no way to express 0.5 (=2-1)! (Notice that there is no
sign in the exponent field!)

All of these problems can be fixed with no changes to our
basic model.

21

FloatingFloating--Point RepresentationPoint Representation
To resolve the problem of synonymous
forms we will establish a rule that the first forms, we will establish a rule that the first
digit of the significand must be 1. This
results in a unique pattern for each
floating-point number.

In the IEEE-754 standard, this 1 is implied
meaning that a 1 is assumed after the binary
point.
By using an implied 1, we increase the precision

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

81

y g p , p
of the representation by a power of two.
(Why?)

In our simple instructional model, we will use no implied bits.

FloatingFloating--Point RepresentationPoint Representation
To provide for negative exponents, we will use a
biased exponent.biased exponent.
A bias is a number that is approximately midway in
the range of values expressible by the exponent. We
subtract the bias from the value in the exponent to
determine its true value.

In our case, we have a 5-bit exponent. We will use
16 for our bias. This is called excess-16
representation.

d l l l h 6

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

82

In our model, exponent values less than 16 are
negative, representing fractional numbers.

FloatingFloating--Point RepresentationPoint Representation
Example:

Express 3210 in the revised 14-bit floating-point modelExpress 3210 in the revised 14 bit floating point model.
We know that 32 = 1.0 x 25 = 0.1 x 26.
To use our excess 16 biased exponent, we add 16 to 6,
giving 2210 (=101102).
Graphically:

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

83

FloatingFloating--Point RepresentationPoint Representation
Example:

Express 0 062510 in the revised 14-bit floating-point modelExpress 0.062510 in the revised 14 bit floating point model.
We know that 0.0625 is 2-4. So in (binary) scientific
notation 0.0625 = 1.0 x 2-4 = 0.1 x 2-3.
To use our excess 16 biased exponent, we add 16 to -3,
giving 1310 (=011012).

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

84

22

FloatingFloating--Point RepresentationPoint Representation
Example:

Express -26.62510 in the revised 14-bit floating-point p 10 g p
model.

We find 26.62510 = 11010.1012. Normalizing, we have:
26.62510 = 0.11010101 x 25.
To use our excess 16 biased exponent, we add 16 to 5,
giving 2110 (=101012). We also need a 1 in the sign bit.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

85

FloatingFloating--Point RepresentationPoint Representation
The IEEE-754 single precision floating point standard
uses bias of 127 over its 8-bit exponent. p

An exponent of 255 indicates a special value.
If the significand is zero, the value is  infinity.
If the significand is nonzero, the value is NaN, “not a
number,” often used to flag an error condition.

The double precision standard has a bias of 1023 over
its 11-bit exponent.

The “special” exponent value for a double precision
number is 2047, instead of the 255 used by the single
precision standard.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

86

precision standard.

FloatingFloating--Point RepresentationPoint Representation
Both the 14-bit model that we have
presented and the IEEE 754 floating point presented and the IEEE-754 floating point
standard allow two representations for
zero.

Zero is indicated by all zeros in the exponent
and the significand, but the sign bit can be
either 0 or 1.

This is why programmers should avoid

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

87

y p g
testing a floating-point value for equality to
zero.

Negative zero does not equal positive zero.

FloatingFloating--Point RepresentationPoint Representation

Is this correct?

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

88

23

FloatingFloating--Point NumbersPoint Numbers
A floating-point number is a

t ti f l brepresentation for real numbers.
IEEE standards set a format for
representing floating-point numbers
in binary.
Example of an IEEE single-precision
format (32 bits long):

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

89

format (32 bits long):
78.37510  429CC000h

Floating Point StructureFloating Point Structure
The Sign Bit

0 d t iti b 1 d t0 denotes a positive number; 1 denotes a
negative number.

The Exponent
represent both positive and negative exponents.
a bias is added to the actual exponent in order
to get the stored exponent.
For IEEE single-precision floats, this value is 127

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

90

For IEEE single precision floats, this value is 127
with 8 bits.
For double precision, the exponent field is 11
bits, and has a bias of 1023.

Floating Point StructureFloating Point Structure
The Mantissa

The mantissa, also known as the
significand, represents the precision bits
of the number. It is composed of an
implicit leading bit and the fraction bits.

Sign Exponent Mantissa Bias

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

91

 Sign Exponent Mantissa Bias

Single 1 8 23 127

Double 1 11 52 1023

IEEE SingleIEEE Single--Precision FormatPrecision Format
Integral part: 78  1001110
fractional part: 0.375  3/8 = 1/4 + 1/8

= .012 + .0012

= .0112

78.37510 = 1001110.0112

= 1.001110011  26

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

92

24

IEEE SingleIEEE Single--Precision FormatPrecision Format
1.001110011  26

Sign bit is 0
Exponent including bias of 127 (127 +6 = 133)
is 1000 0101 in 8 bits
fraction is 00111001100000000000000 23 bits

0 1000 0101 00111001100000000000000
= 0100 0010 1001 1100 1100 0000 0000

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

93

 0100 0010 1001 1100 1100 0000 0000
0000

=42 9C C0 00

Conversion ProcedureConversion Procedure
The leftmost bit is 0 for positive and 1 for
negativenegative.
Convert the magnitude to decimal binary.
Convert the binary decimal number to
scientific notation
Add a bias of 12710 to the exponent to form
the next 8 bits. (to store exponent as a

d b)

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

94

singed number).
Fraction bits form the last 23 bits.

ExampleExample
45.5  45 = 101101

0.5 = 1/2 = .1
45.5
= 101101.1 = 1.011011  25

= 0 1000 0100 01101100000000000000000
= 0100 0010 0011 0110 0000 0000 0000

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

95

0000
= 42 36 00 0 0

ExampleExample
-11.25  1 = 1011

0.25 = 1/4 = .01
-11.25
= -1011.01 = -1.01101  23

= 1 1000 0010 01101000000000000000000
= 1100 0001 0011 0100 0000 0000 0000

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

96

0000
= C1 34 00 0 0

25

ExampleExample
0.125  0 = 0

0.125 = 1/8 = .001
0.125
= 0.001 = 1.0  2-3

= 0 0111 1100 00000000000000000000000
= 0011 1110 0000 0000 0000 0000 0000

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

97

0000
= 3E 00 00 00

FloatingFloating--Point RepresentationPoint Representation
Floating-point addition and subtraction are
done using methods analogous to how we done using methods analogous to how we
perform calculations using pencil and
paper.
The first thing that we do is express both
operands in the same exponential power,
then add the numbers, preserving the
exponent in the sum.
If the exponent requires adjustment we do

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

98

If the exponent requires adjustment, we do
so at the end of the calculation.

FloatingFloating--Point RepresentationPoint Representation
Example:

Find the sum of 1210 and 1.2510 using the 14-bit floating-point model.
f d 4 d 1We find 1210 = 0.1100 x 24. And 1.2510 = 0.101 x 21 = 0.000101

x 24.
Thus, our sum is 0.110101 x 24.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

99

FloatingFloating--Point RepresentationPoint Representation
Floating-point multiplication is also

i d t i ki t h carried out in a manner akin to how
we perform multiplication using pencil
and paper.
We multiply the two operands and
add their exponents.
If the exponent requires adjustment

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

100

If the exponent requires adjustment,
we do so at the end of the
calculation.

26

FloatingFloating--Point RepresentationPoint Representation
Example:

Find the product of 1210 and 1 2510 using the 14-bit Find the product of 1210 and 1.2510 using the 14 bit
floating-point model.

We find 1210 = 0.1100 x 24. And 1.2510 = 0.101 x 21.

Thus, our product is
0.0111100 x 2 5 =

0.1111 x 2 4.

The normalized

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

101

The normalized
product requires an
exponent of 2210 =
101102.

FloatingFloating--Point RepresentationPoint Representation
No matter how many bits we use in a
floating-point representation our model floating point representation, our model
must be finite.
The real number system is, of course,
infinite, so our models can give nothing
more than an approximation of a real
value.
At some point, every model breaks down,
introducing errors into our calculations

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

102

introducing errors into our calculations.
By using a greater number of bits in our
model, we can reduce these errors, but we
can never totally eliminate them.

FloatingFloating--Point RepresentationPoint Representation
Our job becomes one of reducing error, or
at least being aware of the possible at least being aware of the possible
magnitude of error in our calculations.
We must also be aware that errors can
compound through repetitive arithmetic
operations.
For example, our 14-bit model cannot
exactly represent the decimal value 128.5
In binary it is 9 bits wide:

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

103

In binary, it is 9 bits wide:
10000000.12 = 128.510

FloatingFloating--Point RepresentationPoint Representation
When we try to express 128.510 in
our 14 bit model we lose the lowour 14-bit model, we lose the low-
order bit, giving a relative error of:

If we had a procedure that

128.5 - 128
128.5

 0.39%

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

104

If we had a procedure that
repetitively added 0.5 to 128.5, we
would have an error of nearly 2%
after only four iterations.

27

FloatingFloating--Point RepresentationPoint Representation
Floating-point errors can be reduced when
we use operands that are similar in we use operands that are similar in
magnitude.
If we were repetitively adding 0.5 to 128.5,
it would have been better to iteratively add
0.5 to itself and then add 128.5 to this
sum.
In this example, the error was caused by
loss of the low order bit

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

105

loss of the low-order bit.
Loss of the high-order bit is more
problematic.

FloatingFloating--Point RepresentationPoint Representation
Floating-point overflow and underflow can
cause programs to crashcause programs to crash.
Overflow occurs when there is no room to
store the high-order bits resulting from a
calculation.
Underflow occurs when a value is too small
to store, possibly resulting in division by
zero.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

106

Experienced programmers know that it’s
better for a program to crash than to have
it produce incorrect, but plausible, results.

FloatingFloating--Point RepresentationPoint Representation
When discussing floating-point numbers, it
is important to understand the terms is important to understand the terms
range, precision, and accuracy.
The range of a numeric integer format is
the difference between the largest and
smallest values that it can express.
Accuracy refers to how closely a numeric
representation approximates a true value

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

107

representation approximates a true value.
The precision of a number indicates how
much information we have about a value

FloatingFloating--Point RepresentationPoint Representation
Most of the time, greater precision leads to
better accuracy but this is not always truebetter accuracy, but this is not always true.

For example, 3.1333 is a value of pi that is
accurate to two digits, but has 5 digits of
precision.

There are other problems with floating
point numbers.
Because of truncated bits you cannot

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

108

Because of truncated bits, you cannot
always assume that a particular floating
point operation is commutative or
distributive.

28

FloatingFloating--Point RepresentationPoint Representation
This means that we cannot assume:

(+ b) + + (b +) (a + b) + c = a + (b + c) or
a*(b + c) = ab + ac

Moreover, to test a floating point
value for equality to some other
number, first figure out how close one
number can be to be considered

l C ll thi l il d

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

109

equal. Call this value epsilon and use
the statement:

if (abs(x) < epsilon) then ...

BCD BCD –– Binary Coded DecimalBinary Coded Decimal
A BCD digit is represented by 4 binary
bi ibblbits or a nibble.
A BCD number is formed by a group of 4
binary bits or nibbles
That means 8 bits can represent BCD
from 0 – 99 and 16 bits can represent
BCD from 0 - 9999

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

110

BCD from 0 9999

Character RepresentationsCharacter Representations
ASCII
UNICODE

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

111

ASCII CodeASCII Code
ASCII: American Standard Code for Information
Interchange Interchange.
Used to represent characters and textual
information
Each character is represented with 1 byte

upper and lower case letters: a...z and A...Z
decimal digits -- 0,1,…,9
punctuation characters ; :

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

112

punctuation characters -- ; , . :
special characters --$ & @ / {
control characters -- carriage return (CR) , line
feed (LF), beep

29

Examples of ASCII Code Examples of ASCII Code

S 83 (binary) , 53 (hex)

Bit contents (S): 01010011
Bit position: 76543210

Bit contents (8): 00111000

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

113

8 56 (binary) , 38 (hex)

()
Bit position: 76543210

ASCII Code in Binary and HexASCII Code in Binary and Hex

Character Binary HexCharacter Binary Hex
A 0100 0001 41

D 0100 0100 44

a 0110 0001 61

? 0011 1111 3F

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

114

? 0011 1111 3F

2 0011 0010 32

DEL 0111 1111 7F

ASCII GroupsASCII Groups

Bit 6 Bit 5 GroupBit 6 Bit 5 Group

0 0 Control Character

0 1 Digits & Punctuation

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

115

1 0 Upper Case & Special

1 1 Lower Case & Special

ASCII Codes for Numeric DigitsASCII Codes for Numeric Digits
Character Decimal Hexadecimal

0 48 300 48 30

1 49 31

2 50 32

3 51 33

4 52 34

5 53 35

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

116

6 54 36

7 55 37

8 56 38

9 57 39

30

UNICODEUNICODE
UNICODE uses a 16-bit word to

 i l hrepresent a single character
It can represent 65,536 different
characters

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

117

Representing Colors on a Video Representing Colors on a Video
DisplayDisplay

An image is composed pixels (Picture elements)
Different display modes use different data Different display modes use different data
representations for each pixel
A mixture of red, green, and blue form a specific
color on the display
Color depth describes amount of each red,
green, and blue for a mixture on a pixel -- 8, 16,
or 24 bits
24-bit display, each color has 256 different
shades

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

118

shades
16-bit display, each color has 5 or 6 bits of
shades
8-bit display, each color has 2 or 3 bits of
shades

Representing Colors on a Video Representing Colors on a Video
DisplayDisplay

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

119

Representing Colors on a Video Representing Colors on a Video
DisplayDisplay

A hardware palette allows an 8-bit
di l di l ifi l h display to display a specific color chosen
from the colors of 24-bit display

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

120

31

Audio Information Audio Information
RepresentationRepresentation

Audible sounds are the
result of vibrating air
molecules quickly back molecules quickly back
and forth between 20
and 20,000 times per
second (Hz)
A computer is capable of
generate a signal that
repeatedly apply
alternate logic 0 and 1
for a short period of time
-- square wave
Create a stream of bits

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

121

fed to the speaker every
1/40,000 seconds with
1s and 0s, we get a 20
kHz sound
It requires 5,000 bytes
per second to generate
20 kHz sound

Audio Audio Information Information
RepresentationRepresentation

Analog audio signals are much more complex than square
waves, that is only two different voltage levels are not
enough for representationenough for representation

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

122

Analog to Digital Analog to Digital ---- SamplingSampling
Sampling is done at regular intervals of time, often small
fractions of a second.
Like frequencies, sampling rates are measured in hertz.
The precision in which a sample represents the actual
amplitude of the waveform at the instant the sample is taken
depends on the sample size or number of bits (also called bit
depth) used in the binary representation of the amplitude
value.
An 8-bit sample can resolve 256 (=28) different amplitude or
voltage values -- 40,000 bytes/second
A 16-bit converter can resolve 65,536 (=216) values -- 80,000 , () ,
bytes/second
Sound recorded on audio CDs is stored as 16-bit samples.
When a sample is taken, the actual value is rounded to the
nearest value that can be represented by the number of bits
in a sample.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

123

Analog to Digital Analog to Digital ---- SamplingSampling
The minimum amount of storage (in bytes)
required for a digitized signal is the product of required for a digitized signal is the product of

the sample rate (in samples/sec),
the sample size (in bytes; one byte equals 8 bits),
and the signal duration (seconds).

The CD standard sampling rate of 44.1 kHz means
that the waveform is sampled 44100 times per
second.
Thus, a 10-second signal sampled at 44.1 kHz with
16 bit (2 b t) i i i 882 000 b t (16-bit (2-byte) precision requires 882,000 bytes (=
10 sec x 44,100 samples/sec x 2 bytes/sample), or
about 861 Kbytes of storage (1 Kbyte = 1024
bytes).

Introduction to
Computer Technology

Information Representations 124

32

Audio FormatsAudio Formats
MIDI

Musical Instrument Digital Interface is not technically an audio format,
but it has recently become predominant as one of the main methods but it has recently become predominant as one of the main methods
for delivering audio over the Internet. This is due to the fact that the
file size are tiny compared to any other audio formats. The beauty
behind MIDI files is the fact that it only save the data on what notes
the instrument should play rather than the whole complex structure of
sound waves.

WAV
This format has become the standard audio format for sound files on
the Internet. Almost every browser has built-in WAV playback support.
The default Windows WAV format is PCM, which is basically
uncompressed sound data, and these files tend to be rather large.
However, many forms of compressed WAV files are available.

CS 2401 Comp. Org. &
Assembly

Data Representation in Computer
Systems -- Chapter 2

125

MPEG (Layer 3)
This is latest of MPEG audio coding. It achieves high-fidelity sound
quality, with a significant reduction in file size. It can shrink down CD
audio by a factor of 12, without losing any clarity and quality. The
encoded file are small enough to be transmitted at today’s Internet
speeds, this is one of the main reasons why mp3’s are attracting so
many users in the Internet community.

