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ASCII Code
UNICODE

Other Representations
Display colors
Audio

Data OrganizationData Organization
Computers use binary number system 

t  t  i f ti   0’  d 1’to store information as 0’s and 1’s

Bits
A bit is the fundamental unit of computer 
storage
A bit can be 0 (off) or 1 (on)
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Related bits are grouped to represent 
different types of information such as 
numbers, characters, pictures, sound, 
instructions 

NibblesNibbles
Nibbles BCD Hex

0000 0 0

A nibble is a group of 4 
bits 
A nibble is used to 
represent a digit in 
Hex (from 0-15) and 
BCD (Binary-Coded 
Decimal) (from 0-9) 

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9
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Decimal) (from 0 9) 
numbers 

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F
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BytesBytes
Bytes

A bytebyte is a group of 8 bits that is used to 
represent numbers and characters

A standard code for representing 
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A standard code for representing 
numbers and characters is ASCII 
(AAmerican SStandard CCode for 
IInformation IInterchange )

Byte SizeByte Size
Bytes

How many different combinations of 0’s 
and 1’s with 8 bits can form?
In general, how many different 
combinations of 0’s and 1’s with N bits 
can form?
H   diff t h t  th t  
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How many different characters that a 
byte (8 bits) can represent?

WordsWords
Words

A word is a group of 16 bits or 2 bytes that is 
used to represent non-Roman characters in 
UNICODE
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An international standard code for representing 
non-Roman characters like Asian, Greek, and 
Russian characters is UNICODE

Double WordsDouble Words
Double Words

A double word is a group of 32 bits or 4 
bytes or 2 words
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Related BytesRelated Bytes
A nibblenibble is a half-byte (4-bit) - hex representation
A wordword is a 2-byte (16-bit) data item
A doubleworddoubleword is a 4-byte (32-bit) data item
A quadwordquadword is an 8-byte (64-bit) data item
A paragraphparagraph is a 16-byte (128-bit) area
A kilobytekilobyte (KB) is 210 = 1,024 bytes  1 K bytes)
A megabytemegabyte (MB) is 220 = 1,048,576  1 MB
A GigabyteGigabyte (GB) is 230 = 1 073 741 824 1 GB
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A GigabyteGigabyte (GB) is 230 = 1,073,741,824  1 GB
A TerabyteTerabyte (TB) is 240 = 1,099,511,627,776  1 TB

Numbering SystemsNumbering Systems

Unsigned number system
Signed binary Systems

Signed and magnitude system
1’s complement system
2’s complement system

Hexadecimal system
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Hexadecimal system

base 10 -- has ten digits: 

Binary Number SystemBinary Number System

0,1,2,3,4,5,6,7,8,9
positional notation

2401 = 2 103 + 4 102 + 0 101 + 1 100

base 2 -- has two digits: 0 and 1
positional notationpositional notation

11012 = 1  23 + 1  22 + 0  21 + 1  20

= 8  +  4  +  0  + 1  = 13
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Binary Positional NotationBinary Positional Notation

If 

N  = bn -1b n -2  b1b0

then  

N = bn -1  2n - 1 + bn - 2  2n -2 + +  
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b0  20
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Positional Positional Notation Notation –– Convert base Convert base 
2 2 or or 16 16 to to base base 1010
Position ... 4 3 2 1 0

104 103 102 101 100
Positional Value

... 10 10 10 10 10

... 10000 1000 100 10 1
2 4 0 1

21000+ 4100+ 010 + 11 = 240110

Position ... 8 7 6 5 4 3 2 1 0
Positional 
Value

... 28 27 26 25 24 23 22 21 20

... 256 128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

Introduction to 
Computer Technology

Information Representations 13

... 256 128 64 32 16 8 4 2 1

1 0 1 1 0
16 +  0 +  4   +  2  +  0 = 22

BinHex Application --
http://cms.dt.uh.edu/faculty/ongards/links/links.php?id=1

Unsigned Binary CodeUnsigned Binary Code
Use for representing integers without 

i d ( l b )signed (natural numbers)
0 0000 8 1000

1 0001 9 1001

2 0010 10 1010

3 0011 11 1011

4 0100 12 1100
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4 0100 12 1100

5 0101 13 1101

6 0110 14 1110

7 0111 15 1111

Number of Bits Required in Number of Bits Required in 
Unsigned Binary CodeUnsigned Binary Code

What is the range of values that can 
be represented with n bits in the 
Unsigned Binary Code?

[0, 2n-1]
How many bits are required to 

t  i  b  N i  
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represent a given number N in 
decimal?

Min. Number of Bits = log2(N+1)

Decimal to Binary ConversionDecimal to Binary Conversion

Suppose we want to convert 
the decimal number 190 tothe decimal number 190 to 
base 3.

We know that 35 = 243 
so our result will be less 
than six digits wide.  
The largest power of 3 
that we need is 
therefore 3 4 = 81, and 
81  2 = 162.
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81  2  162.
Write down the 2 and 
subtract 162 from 190, 
giving 28.
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Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...

Th  t  f 3 i            The next power of 3 is           
3 3 = 27.  We’ll need one 
of these, so we subtract 
27 and write down the 
numeral 1 in our result. 
The next power of 3, 3 2 

= 9, is too large, but we 
h  t  i   
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have to assign a 
placeholder of zero and 
carry down the 1.

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...
3 1 = 3  is again too 3 1 = 3  is again too 
large, so we assign a 
zero placeholder.
The last power of 3,  3
0 = 1, is our last 
choice, and it gives us 
a difference of zero.
Our result  reading 
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Our result, reading 
from top to bottom is:

19010 = 210013

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...
First we take the First we take the 
number that we wish 
to convert and divide 
it by the radix in 
which we want to 
express our result.
In this case, 3 
divides 190   63 
times  with a 
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times, with a 
remainder of 1.
Record the quotient 
and the remainder.

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...

63 is evenly divisible 
by 3.
Our remainder is 
zero, and the 
quotient is 21.

CS 2401 Comp. Org. & 
Assembly 

Data Representation in Computer 
Systems -- Chapter 2

20



6

Decimal to Binary ConversionDecimal to Binary Conversion

Converting 190 to base 3...

C ti  i  thi   Continue in this way 
until the quotient is 
zero.
In the final calculation, 
we note that 3 divides 
2 zero times with a 
remainder of 2.
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Our result, reading 
from bottom to top is:

19010 = 210013

Successive division by Successive division by 22
What is 2 792 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1
2 79

2 39 1representation of 
7910 in binary?

2 39 12 39 1
2 19 1

2 39 1
2 19 1

2 9 1

2 39 1
2 19 1

2 9 1
2 4 1

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0
2 1 0

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0
2 1 0

0 1

2 39 1
2 19 1

2 9 1
2 4 1
2 2 0
2 1 0

0 1

Introduction to 
Computer Technology
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0 10 1
Therefore 7910= 1011112

Reverse Positional NotationReverse Positional Notation
Positional 
Value 512 256 128 64 32 16 8 4 2 1Positional 
Value 512 256 128 64 32 16 8 4 2 1

1

Positional 
Value 512 256 128 64 32 16 8 4 2 1

1 1

Positional 
Value 512 256 128 64 32 16 8 4 2 1

1 1 1

Positional 
Value 512 256 128 64 32 16 8 4 2 1

1 1 1 1

Positional 
Value 512 256 128 64 32 16 8 4 2 1

1 1 1 1 1

Positional 
Value 512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 1

Positional 
Value 512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 1

79 - 64 = 15 15 - 8 = 7 3 - 2 = 1

11 11 1 1

7 - 4 = 3

1 1 1 11 1 1 1 11 0 0 1 1 1 11 0 0 1 1 1 1
64  +  0  + 0 +  8 +  4  +  2  +  1  = 79

Since 
2 < 3

Since 
4 < 7

Since 
64 < 79

Since 
8 < 15

Introduction to 
Computer Technology
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BinHex Application --
http://cms.dt.uh.edu/faculty/ongards/links/links.php?id=1

Decimal to Binary ConversionDecimal to Binary Conversion
Fractional decimal values have nonzero digits to the 
right of the decimal point.right of the decimal point.
Fractional values of other radix systems have 
nonzero digits to the right of the radix point.
Numerals to the right of a radix point represent 
negative powers of the radix:

0.471010 =  4  10 -1 + 7  10 -2 + 1  10 -3

0 1102 =  1  2 -1 + 1  2 -2
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0.1102 =  1  2 + 1  2 
=     ½    +   ¼ 
=    0.5  +  0.25 =  0.75
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Decimal to Binary ConversionDecimal to Binary Conversion
As with whole-number conversions, you can use 
either of two methods: a subtraction method either of two methods: a subtraction method 
and an easy multiplication method.
The subtraction method for fractions is identical 
to the subtraction method for whole numbers. 
Instead of subtracting positive powers of the 
target radix, we subtract negative powers of the 
radix.
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We always start with the largest value first, n -
1, where n is our radix, and work our way along 
using larger negative exponents.

Decimal to Binary ConversionDecimal to Binary Conversion
The calculation to the right 
is an example of using the p g
subtraction method to 
convert the decimal 0.8125 
to binary.

Our result, reading 
from top to bottom
is:

0.812510 = 
0 1101
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0.11012

Of course, this 
method works with 
any base, not just 
binary.

Decimal to Binary ConversionDecimal to Binary Conversion
Using the 
multiplication methodmultiplication method 
to convert the decimal 
0.8125 to binary, we 
multiply by the radix 2.

The first product 
carries into the 
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units place.

Decimal to Binary ConversionDecimal to Binary Conversion
Converting 0.8125 to 
binarybinary . . .

Ignoring the value 
in the units place at 
each step, continue 
multiplying each 
fractional part by 
the radix.
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Decimal to Binary ConversionDecimal to Binary Conversion
Converting 0.8125 to binary . . .

You are finished when the You are finished when the 
product is zero, or until 
you have reached the 
desired number of binary 
places.
Our result, reading from 
top to bottom is:

0.812510 = 0.11012
Thi  th d l  k  
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This method also works 
with any base. Just use 
the target radix as the 
multiplier.

Decimal to Binary ConversionDecimal to Binary Conversion
The binary numbering system is the most important radix 
system for digital computerssystem for digital computers.
However, it is difficult to read long strings of binary 
numbers-- and even a modestly-sized decimal number 
becomes a very long binary number.

For example:    
110101000110112 = 1359510
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For compactness and ease of reading, binary values are 
usually expressed using the hexadecimal, or base-16, 
numbering system.

Unsigned ConversionUnsigned Conversion

Convert an unsigned binary number 
to decimal
use positional notation (polynomial 

expansion)

Convert a decimal number to 
unsigned Binary
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unsigned Binary
use successive division by 2

ExamplesExamples

Represent 2610 in unsigned Binary 
Code

2610 = 110102

Represent 2610 in unsigned Binary 
Code using 8 bits

26   00011010
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2610 =  000110102
Represent (26)10 in Unsigned Binary 
Code using 4 bits -- not possible
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Signed Binary CodesSigned Binary Codes
These are codes used to represent 

positive and negative numbers.
Signed and Magnitude System
1’s Complement System
2’s Complement System
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Signed and MagnitudeSigned and Magnitude

The most significant (left most) bit 
represent the sign bit

0 is positive 
1 is negative

The remaining bits represent the 
magnitude
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magnitude

Examples of Signed & Examples of Signed & 
MagnitudeMagnitude

D i l 5-bit SignDecimal 5 bit Sign
and Magnitude

+5 00101

-5 10101

13 01101
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+13 01101

-13 11101

Signed and Magnitude in Signed and Magnitude in 4 4 bitsbits

0 0000 -0 1000

1 0001 -1 1001

2 0010 -2 1010

3 0011 -3 1011

4 0100 -4 1100

5 0101 -5 1101
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6 0110 -6 1110

7 0111 -7 1111



10

ExamplesExamples

D i l Si d 8 bit Si dDecimal Signed 8-bit Signed

2610 0110102 000110102
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-2610 1110102 100110102
 

 

11’s Complement System’s Complement System

Positive numbers:
same as in unsigned binary system
pad a 0 at the leftmost bit position 

Negative numbers:
convert the magnitude to unsigned 
binary system
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y y
pad a 0 at the leftmost bit position
complement every bit

Examples of Examples of 11’s Complement’s Complement

D i l 5 bi 1’ lDecimal 5-bit 1’s complement

5 00101 

-5 11010 

13 01101
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13 01101

-13 10010 
 

 

11’s Complement in ’s Complement in 4 4 bitsbits

0 0000 -0 11110 0000 0 1111

1 0001 -1 1110

2 0010 -2 1101

3 0011 -3 1100

4 0100 -4 1011
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5 0101 -5 1010

6 0110 -6 1001

7 0111 -7 1000
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D i l Si d 8 bit Si d

ExamplesExamples

Decimal Signed 8-bit Signed

2610 0110102 000110102
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-2610 1001012 111001012
 

 

22’s Complement System’s Complement System

Positive numbers:
same as in unsigned binary system
pad a 0 at the leftmost bit position 

Negative numbers:
convert the magnitude to unsigned 
binary system
pad a 0 at the leftmost bit position
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pad a 0 at the leftmost bit position
complement every bit
add 1 to the complement number

Examples of Examples of 22’s Complement’s Complement

D i l 5 bi 2’ lDecimal 5-bit 2’s complement

5 00101 

-5 11011 

13 01101
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13 01101

-13 10011 
 

 

22’s Complement in ’s Complement in 4 4 bitsbits

0 0000 -1 1111

1 0001 -2 1110

2 0010 -3 1101

3 0011 -4 1100

4 0100 -5 1011

5 0101 6 1010
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5 0101 -6 1010

6 0110 -7 1001

7 0111 -8 1000
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ExamplesExamples

D i l Si d 8 bit Si dDecimal Signed 8-bit Signed

2610 0110102 000110102
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-2610 1001102 111001102
 

 

More ExamplesMore Examples

Represent 65 in 2’s complement

65 = 0100 00012

Represent -65 in 2’s complement
-65 = 1011 11112
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Convert Convert 22’s Complement to decimal’s Complement to decimal

Positive 2’s complement numbers
convert the same as in unsigned binary

Negative 2’s complement numbers
complement the 2’s complement number 
add 1 to the complemented number
convert the same as in unsigned binary
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ExamplesExamples

2’s complement Decimal2 s complement Decimal

00101 4 + 1 = 5 

11011  00100 + 1 4 + 1 = 5  -5 

01101 8 + 4 + 1 = 13
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01101 8 + 4 + 1 = 13

10011  01100 + 1 8 + 4 + 1 = 13  -13
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Mathematical FormulaMathematical Formula
Formula to convert a decimal number 
t   1’  l t to a 1’s complement --

N' = 2n - N - 1
Formula to convert a decimal number 
to a 2’s complement --

N' = 2n - N
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where N is the binary number 
representing the decimal with n
number of bits  

Hexadecimal NotationHexadecimal Notation

base 16 -- has 16 digits:
0 1 2 3 4 5 6 7 8 9 A B C D E F

each Hex digit represents a group of 
4 bits (i.e. half of a byte or a nibble)   
0000 to  1111
use as a shorthand notation for 
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use as a shorthand notation for 
convenient 

Convert Binary       HexConvert Binary       Hex

Binary HexBinary Hex

1111 0110b F6h 

1001 1101 0000 1010b  9D0Ah 

1111 0110 1110 0111b F6E7h

CS 2401 Comp. Org. & 
Assembly 

Data Representation in Computer 
Systems -- Chapter 2

52

1011011b 5Bh 
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ExamplesExamples
ASCII value of character ‘D’ in Hex

D  = 0100 0100bASCII = 44hASCII

Represent 37d in 2’s complement using Hex. 
37d = 010 0101b2’s = 0010 0101b2’s 

= 25h2’s

Represent -37d in 2’s complement using Hex.
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p p g

-37d = 101 1011b2’s = 1101 1011b2’s =  DBh2’s 

Convert Hex        DecimalConvert Hex        Decimal
Convert Hex to decimal  

use positional (polynomial expansion) notation
3BAh = 3  162 + B  161 + A  160

= 3  256 + 11  16 + 10  1 = 954d
Convert decimal to Hex

Use successive divisions by 16
359/16       22 R 7,   
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359/16       22 R 7,   
22/16       1 R 6,  
1/16       0 R 1 

359d = 167h

Covert Large Binary to DecimalCovert Large Binary to Decimal
Convert 1001 0011 0101 1100b to decimal

Method 1:
Use polynomial expansion methods 

Method 2:
Convert number to hex, then convert it 
to decimal.  
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o dec a
1001 0011 0101 1100b = 935Ch

935Ch = 37724d

Addition and Subtraction in Addition and Subtraction in 
Signed and MagnitudeSigned and Magnitude

(a) 5
+2

 0101
+0010

7  0111

(b) -5
-2

 1101
+1010

-7  1111

(c) 5
-2

 0101
+1010

3 0011
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3 0011

(d) -5
+2

 1101
+0010

-3  1011
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Addition and Subtraction in Addition and Subtraction in 
11’s Complement’s Complement

(a) 5
+2

 0101
+0010

7 01117  0111

(b) -5
-2

   1010
  +1101

-7  1 0111
      1
   1000

(c) 5
-2

   0101
  +1101

3 1 0010
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3  1 0010
      1
   0011

(d) -5
+2

   1010
  +0010

-3    1100

Addition and Subtraction inAddition and Subtraction in
22’s Complement’s Complement

(a) 5
+2

 0101
+001000 0

7  0111

(b) -5
-2

   1011
  +1110

-7  1 1001

(c) 5
-2

   0101
  +1110

3 1 0011
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3 1 0011

(d) -5
+2

   1011
  +0010

-3    1101

Theoretical Facts Theoretical Facts 
Why is the carry out from adding 1’s 
complements added to the sum? 

N1' = 2n – N1 – 1 and N2' = 2n – N2 – 1

Why is the carry out from adding 2’s 
complements dropped?

' d '
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N1' = 2n – N1 and N2' = 2n – N2

Overflow ConditionsOverflow Conditions
Carry-in  carry-out

0111 1000
5 0101 -5 1011

+3 +0011 -4 +1100
-8  1000          7 10111

Carry-in = carry-out
0000 1110
0101 2 1110
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+5  0101         -2  1110
+2 +0010         -6 +1010
7  0111 -8 11000
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Signed Integer RepresentationSigned Integer Representation
Overflow and carry are tricky ideas.
Signed number overflow means nothing in the context of Signed number overflow means nothing in the context of 
unsigned numbers, which set a carry flag instead of an 
overflow flag.
If a carry out of the leftmost bit occurs with an unsigned 
number, overflow has occurred.
Carry and overflow occur independently of each other. 
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Signed Integer RepresentationSigned Integer Representation
0011 (3) 1011 (-5)

 0110 (6)

+ 0000

+ 0011

+ 0011

 1100 (-4)

+ 0000

+ 0000

+ 1011

62

+ 0011

+ 0000____

00010010 (18)

+ 1011

+ 1011____

10000100 (-124)

Signed Integer RepresentationSigned Integer Representation
Example:
98765 1001 98765 (1000 + 1)98765  1001 = 98765 (1000 + 1) 

= 98765  1000 + 98765 
98765  999 = 98765(1000 - 1) 

= 98765  1000 – 98765
Example:
0011  0110 = 0011 (1000 - 0010) 

= 0011  1000 0011  0010= 0011  1000 – 0011  0010 

63

Signed Integer RepresentationSigned Integer Representation
Booth’s Algorithm

Fast multiplicationFast multiplication
Signed multiplication

In Booth’s algorithm, the first 1 in a string of 1s in the 

multiplier is replaced with a subtraction of the 

multiplicand.
Shift the partial sums until the last 1 of the string is Shift the partial sums until the last 1 of the string is 
detected.
Then add the multiplicand.

64
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001100110011001100110011

Signed Integer RepresentationSigned Integer Representation
ai ai-1 ai-1  ai Operation

 0110

+ 0000

+ 1101

+ 0000

 0110

+00000000

-0000011

+ 0000

 0110

+00000000

-0000011

+000000

 0110

+00000000

-0000011

+000000

 01100

+00000000

- 0011

+ 0000

 0110

+00000000

+1111101

+000000

0 0 0 in middle of string 0.
No operation.

0 1 1 end of string 1.
Add multiplicand.

1 0 1
beginning of string 1.
Subtract 
multiplicand. 
in middle of string 1 + 0000

+ 0011____

00010010

+ 0000

+ 0011____

00010010

+000000

+ 0011____

00010010

+000000

+00011____

00010010

+ 0000

+ 0011____

00010010

+000000

+00011____

100010010Ignore all bits over 2n.

1 1 0 in middle of string 1.
No operation.

65

1101 (-3) 0011 (+3)

Signed Integer RepresentationSigned Integer Representation
1101 (-3) 0011 (+3)

 1100 (-4)

+ 00000000

+ 0000000

+ 000011

 1100 (-4)

+ 00000000

+ 0000000

- 111101+ 000011

+ 00000___

00001100 (+12)

111101

+ 00000___

66

Signed Integer RepresentationSigned Integer Representation

00110101 (53)
 01111110 (126)

+ 0000000000000000
+ 111111111001011
+ 00000000000000
+ 0000000000000
+ 000000000000
00000000000

53  

67

+ 00000000000
+ 0000000000
+ 000110101_______
10001101000010110Ignore all bits over 2n.

Signed Integer RepresentationSigned Integer Representation
0101 (+5)

 1100 (-4)

+ 00000000

+ 0000000

+ 111011

ai-1  ai Action Register Carry

0000 1100 0

00 rshf 0000 0110 0

00 rshf 0000 0011 0

10 sub
rshf

+1011
1101

0011
1001

0
1+ 111011

+ 00000___

11101100 (-20)

11 rshf 1110 1100 1

68
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Signed Integer RepresentationSigned Integer Representation
0010110 (+22) 1101010(-22)

 1011110 (-34)

+ 00000000000000

+ 1111111101010

+ 000000000000

+ 00000000000

+ 0000000000

+ 000010110

+ 11101010

111110100010100 (-748)
69

Signed Integer RepresentationSigned Integer Representation
ai-1  ai Action Register Carry

0000000 1011110 00000000 1011110 0

00 rshf 0000000 0101111 0

10 sub
rshf

+1101010
1110101

0101111
0010111

1

11 rshf 1111010 1001011 1

11 rshf 1111101 0100101 1

11 rshf 1111110 1010010 1

01 add
rshf

+0010110
0010100
0001010

1010010
0101001

0

10 sub
rshf

+1101010
1110100
1111010

0101001
0010100

1
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Addition and Subtraction inAddition and Subtraction in
Hexadecimal SystemHexadecimal System

(9F1B)16 -(4A36)16 : 16

(9F1B)16 +(4A36)16 :  1 1
 9F1B+  4A36
 E951

Addition

Subtraction

CS 2401 Comp. Org. & 
Assembly 

Data Representation in Computer 
Systems -- Chapter 2
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(9F1B)16 (4A36)16 :  16
 9F1B-  4A36
 54E5

FloatingFloating--Point RepresentationPoint Representation
Floating-point numbers allow an 
arbitrary number of decimal places to 
the right of the decimal point.

For example:  0.5  0.25 = 0.125
They are often expressed in scientific 
notation. 
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otat o
For example: 

0.125 = 1.25  10-1

5,000,000 = 5.0  106
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FloatingFloating--Point RepresentationPoint Representation
Computers use a form of scientific notation 
f  fl i i  i  for floating-point representation 
Numbers written in scientific notation have 
three components:

CS 2401 Comp. Org. & 
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Systems -- Chapter 2
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FloatingFloating--Point RepresentationPoint Representation
Computer representation of a 
fl ti i t b  i t  f floating-point number consists of 
three fixed-size fields:

This is the standard arrangement of 
these fields.
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FloatingFloating--Point RepresentationPoint Representation

The one-bit sign field is the sign of the stored value.
The size of the exponent field, determines the range 
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p , g
of values that can be represented.
The size of the significand determines the precision of 
the representation.

FloatingFloating--Point RepresentationPoint Representation

The IEEE-754 single precision floating point standard 
uses an 8-bit exponent and a 23-bit significand.
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The IEEE-754 double precision standard uses an 11-
bit exponent and a 52-bit significand.

p g
For illustrative purposes, we will use a 14-bit model 
with a 5-bit exponent and an 8-bit significand.
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FloatingFloating--Point RepresentationPoint Representation

The significand of a floating-point number is always 
preceded by an implied binary point.
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Thus, the significand always contains a fractional 
binary value.
The exponent indicates the power of 2 to which the 
significand is raised.

FloatingFloating--Point RepresentationPoint Representation
Example:

Express 3210 in the simplified 14-bit floating-point modelExpress 3210 in the simplified 14 bit floating point model.
We know that 32 is 25.  So in (binary) scientific notation 
32 = 100000 = 1.0 x 25 = 0.1 x 26.
Using this information, we put 110 (= 610) in the 
exponent field and 1 in the significand as shown.
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FloatingFloating--Point RepresentationPoint Representation
The illustrations shown 
at the right are all at the right are all 
equivalent 
representations for 32 
using our simplified 
model.
Not only do these 
synonymous 
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representations waste 
space, but they can 
also cause confusion.

FloatingFloating--Point RepresentationPoint Representation

Another problem with our system is that we have 
made no allowances for negative exponents.  We have 
no a  to e p ess 0 5 ( 2 1)!  (Notice that the e is no 
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no way to express 0.5 (=2-1)!  (Notice that there is no 
sign in the exponent field!)

All of these problems can be fixed with no changes to our 
basic model.
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FloatingFloating--Point RepresentationPoint Representation
To resolve the problem of synonymous 
forms  we will establish a rule that the first forms, we will establish a rule that the first 
digit of the significand must be 1.  This 
results in a unique pattern for each 
floating-point number.

In the IEEE-754 standard, this 1 is implied 
meaning that a 1 is assumed after the binary 
point.
By using an implied 1, we increase the precision 
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y g p , p
of the representation by a power of two.  
(Why?)

In our simple instructional model, we will use no implied bits.

FloatingFloating--Point RepresentationPoint Representation
To provide for negative exponents, we will use a 
biased exponent.biased exponent.
A bias is a number that is approximately midway in 
the range of values expressible by the exponent.  We 
subtract the bias from the value in the exponent to 
determine its true value.

In our case, we have a 5-bit exponent.  We will use 
16 for our bias.  This is called excess-16 
representation.

d l l l h 6
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In our model, exponent values less than 16 are 
negative, representing fractional numbers.

FloatingFloating--Point RepresentationPoint Representation
Example:

Express 3210 in the revised 14-bit floating-point modelExpress 3210 in the revised 14 bit floating point model.
We know that 32 = 1.0 x 25 = 0.1 x 26.
To use our excess 16 biased exponent, we add 16 to 6, 
giving 2210 (=101102). 
Graphically:
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FloatingFloating--Point RepresentationPoint Representation
Example:

Express 0 062510 in the revised 14-bit floating-point modelExpress 0.062510 in the revised 14 bit floating point model.
We know that 0.0625 is 2-4.  So in (binary) scientific 
notation 0.0625 = 1.0 x 2-4 = 0.1 x 2-3.
To use our excess 16 biased exponent, we add 16 to -3, 
giving 1310 (=011012). 
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FloatingFloating--Point RepresentationPoint Representation
Example:

Express -26.62510 in the revised 14-bit floating-point p 10 g p
model.

We find 26.62510 = 11010.1012.  Normalizing, we have: 
26.62510 = 0.11010101 x 25.
To use our excess 16 biased exponent, we add 16 to 5, 
giving 2110 (=101012). We also need a 1 in the sign bit. 
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FloatingFloating--Point RepresentationPoint Representation
The IEEE-754 single precision floating point standard 
uses bias of 127 over its 8-bit exponent. p

An exponent of 255 indicates a special value.
If the significand is zero, the value is   infinity.
If the significand is nonzero, the value is NaN, “not a 
number,” often used to flag an error condition.

The double precision standard has a bias of 1023 over 
its 11-bit exponent.

The “special” exponent value for a double precision 
number is 2047, instead of the 255 used by the single 
precision standard.
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precision standard.

FloatingFloating--Point RepresentationPoint Representation
Both the 14-bit model that we have 
presented and the IEEE 754 floating point presented and the IEEE-754 floating point 
standard allow two representations for 
zero.

Zero is indicated by all zeros in the exponent 
and the significand, but the sign bit can be 
either 0 or 1.

This is why programmers should avoid 
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y p g
testing a floating-point value for equality to 
zero. 

Negative zero does not equal positive zero.

FloatingFloating--Point RepresentationPoint Representation

Is this correct?
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Systems -- Chapter 2
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FloatingFloating--Point NumbersPoint Numbers
A floating-point number is a 

t ti  f  l brepresentation for real numbers.
IEEE standards set a format for 
representing floating-point numbers 
in binary.
Example of an IEEE single-precision 
format (32 bits long):
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format (32 bits long):
78.37510  429CC000h

Floating Point StructureFloating Point Structure
The Sign Bit

0 d t iti b 1 d t0 denotes a positive number; 1 denotes a
negative number.

The Exponent
represent both positive and negative exponents.
a bias is added to the actual exponent in order
to get the stored exponent.
For IEEE single-precision floats, this value is 127
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For IEEE single precision floats, this value is 127
with 8 bits.
For double precision, the exponent field is 11
bits, and has a bias of 1023.

Floating Point StructureFloating Point Structure
The Mantissa

The mantissa, also known as the
significand, represents the precision bits
of the number. It is composed of an
implicit leading bit and the fraction bits.

Sign Exponent Mantissa Bias
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 Sign Exponent Mantissa Bias

Single 1 8 23 127 

Double 1 11 52 1023 
 

 

IEEE SingleIEEE Single--Precision FormatPrecision Format
Integral part: 78  1001110
fractional part: 0.375  3/8 = 1/4 + 1/8 

= .012 + .0012

= .0112

78.37510 = 1001110.0112

= 1.001110011  26
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IEEE SingleIEEE Single--Precision FormatPrecision Format
1.001110011  26

Sign bit is 0
Exponent including bias of 127 (127 +6 = 133) 
is 1000 0101 in 8 bits 
fraction is 00111001100000000000000 23 bits

0 1000 0101 00111001100000000000000
= 0100 0010 1001 1100 1100 0000 0000 
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 0100 0010 1001 1100 1100 0000 0000 
0000

=42 9C C0 00

Conversion ProcedureConversion Procedure
The leftmost bit is 0 for positive and 1 for 
negativenegative.
Convert the magnitude to decimal binary.
Convert the binary decimal number to 
scientific notation
Add a bias of 12710 to the exponent to form 
the next 8 bits. (to store exponent as a 

d b )
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singed number).
Fraction bits form the last 23 bits.

ExampleExample
45.5  45 = 101101

0.5 = 1/2 = .1
45.5 
= 101101.1 = 1.011011  25

= 0 1000 0100 01101100000000000000000 
= 0100 0010 0011 0110 0000 0000 0000 
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0000
= 42 36 00 0 0

ExampleExample
-11.25  1 = 1011

0.25 = 1/4 = .01
-11.25 
= -1011.01 = -1.01101  23

= 1 1000 0010 01101000000000000000000 
= 1100 0001 0011 0100 0000 0000 0000 
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0000
= C1 34 00 0 0
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ExampleExample
0.125  0 = 0

0.125 = 1/8 = .001
0.125 
= 0.001 = 1.0  2-3

= 0 0111 1100 00000000000000000000000 
= 0011 1110 0000 0000 0000 0000 0000 
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0000
= 3E 00 00 00

FloatingFloating--Point RepresentationPoint Representation
Floating-point addition and subtraction are 
done using methods analogous to how we done using methods analogous to how we 
perform calculations using pencil and 
paper.
The first thing that we do is express both 
operands in the same exponential power, 
then add the numbers, preserving the 
exponent in the sum.
If the exponent requires adjustment  we do 
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If the exponent requires adjustment, we do 
so at the end of the calculation.

FloatingFloating--Point RepresentationPoint Representation
Example:

Find the sum of 1210 and 1.2510 using the 14-bit floating-point model.
f d 4 d 1We find 1210 = 0.1100 x 24.  And 1.2510 = 0.101 x 21 = 0.000101 

x 24.
Thus, our sum is 0.110101 x 24. 
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FloatingFloating--Point RepresentationPoint Representation
Floating-point multiplication is also 

i d t i    ki  t  h  carried out in a manner akin to how 
we perform multiplication using pencil 
and paper.
We multiply the two operands and 
add their exponents.
If the exponent requires adjustment  
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If the exponent requires adjustment, 
we do so at the end of the 
calculation.
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FloatingFloating--Point RepresentationPoint Representation
Example:

Find the product of 1210 and 1 2510 using the 14-bit Find the product of 1210 and 1.2510 using the 14 bit 
floating-point model.

We find 1210 = 0.1100 x 24.  And 1.2510 = 0.101 x 21.

Thus, our product is 
0.0111100 x 2 5  = 

0.1111 x 2 4. 

The normalized
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The normalized 
product requires an 
exponent of 2210 = 
101102.

FloatingFloating--Point RepresentationPoint Representation
No matter how many bits we use in a 
floating-point representation  our model floating point representation, our model 
must be finite.
The real number system is, of course, 
infinite, so our models can give nothing 
more than an approximation of a real 
value. 
At some point, every model breaks down, 
introducing errors into our calculations
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introducing errors into our calculations.
By using a greater number of bits in our 
model, we can reduce these errors, but we 
can never totally eliminate them.

FloatingFloating--Point RepresentationPoint Representation
Our job becomes one of reducing error, or 
at least being aware of the possible at least being aware of the possible 
magnitude of error in our calculations.
We must also be aware that errors can 
compound through repetitive arithmetic 
operations.
For example, our 14-bit model cannot 
exactly represent the decimal value 128.5  
In binary  it is 9 bits wide:
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In binary, it is 9 bits wide:
10000000.12 = 128.510

FloatingFloating--Point RepresentationPoint Representation
When we try to express 128.510 in 
our 14 bit model  we lose the lowour 14-bit model, we lose the low-
order bit, giving a relative error of:

If we had a procedure that 

128.5 - 128
128.5

 0.39%
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If we had a procedure that 
repetitively added 0.5 to 128.5, we 
would have an error of nearly 2% 
after only four iterations.
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FloatingFloating--Point RepresentationPoint Representation
Floating-point errors can be reduced when 
we use operands that are similar in we use operands that are similar in 
magnitude.
If we were repetitively adding 0.5 to 128.5, 
it would have been better to iteratively add 
0.5 to itself and then add 128.5 to this 
sum.
In this example, the error was caused by 
loss of the low order bit
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loss of the low-order bit.
Loss of the high-order bit is more 
problematic.

FloatingFloating--Point RepresentationPoint Representation
Floating-point overflow and underflow can 
cause programs to crashcause programs to crash.
Overflow occurs when there is no room to 
store the high-order bits resulting from a 
calculation.
Underflow occurs when a value is too small 
to store, possibly resulting in division by 
zero.
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Experienced programmers know that it’s 
better for  a program to crash than to have 
it produce incorrect, but plausible, results.

FloatingFloating--Point RepresentationPoint Representation
When discussing floating-point numbers, it 
is important to understand the terms is important to understand the terms 
range, precision, and accuracy.
The range of a numeric integer format is 
the difference between the largest and 
smallest values that it can express.
Accuracy refers to how closely a numeric 
representation approximates a true value
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representation approximates a true value.
The precision of a number indicates how 
much information we have about a value

FloatingFloating--Point RepresentationPoint Representation
Most of the time, greater precision leads to 
better accuracy  but this is not always truebetter accuracy, but this is not always true.

For example, 3.1333 is a value of pi that is 
accurate to two digits, but has 5 digits of 
precision.

There are other problems with floating 
point numbers.
Because of truncated bits  you cannot 
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Because of truncated bits, you cannot 
always assume that a particular floating 
point operation is commutative or 
distributive.
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FloatingFloating--Point RepresentationPoint Representation
This means that we cannot assume:

(  + b) +    + (b + )  (a + b) + c = a + (b + c)  or
a*(b + c) = ab + ac

Moreover, to test a floating point 
value for equality to some other 
number, first figure out how close one 
number can be to be considered 

l  C ll thi  l  il  d  
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equal. Call this value epsilon and use 
the statement:

if (abs(x) < epsilon) then ...

BCD BCD –– Binary Coded DecimalBinary Coded Decimal
A BCD digit is represented by 4 binary 
bi    ibblbits or a nibble.
A BCD number is formed by a group of 4 
binary bits or nibbles
That means 8 bits can represent BCD 
from 0 – 99 and 16 bits can represent 
BCD from 0 - 9999
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BCD from 0 9999

Character RepresentationsCharacter Representations
ASCII
UNICODE
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ASCII CodeASCII Code
ASCII: American Standard Code for Information 
Interchange   Interchange.  
Used to represent characters and  textual 
information
Each character is represented with 1 byte

upper and lower case letters: a...z  and A...Z
decimal digits -- 0,1,…,9
punctuation characters ;     : 
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punctuation characters -- ; ,  .  : 
special characters --$ & @ /  {    
control characters -- carriage return (CR) , line 
feed (LF), beep
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Examples of ASCII Code Examples of ASCII Code 

S          83 (binary) , 53 (hex)

Bit contents (S): 01010011
Bit position: 76543210

Bit contents (8): 00111000
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8          56 (binary) , 38 (hex)

( )
Bit position:        76543210

ASCII Code in Binary and HexASCII Code in Binary and Hex

Character Binary HexCharacter Binary Hex
A 0100 0001 41

D 0100 0100 44

a 0110 0001 61

? 0011 1111 3F
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? 0011 1111 3F

2 0011 0010 32

DEL 0111 1111 7F

ASCII GroupsASCII Groups

Bit 6 Bit 5 GroupBit 6 Bit 5 Group

0 0 Control Character

0 1 Digits & Punctuation
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1 0 Upper Case & Special

1 1 Lower Case & Special

ASCII Codes for Numeric DigitsASCII Codes for Numeric Digits
Character Decimal Hexadecimal

0 48 300 48 30

1 49 31

2 50 32

3 51 33

4 52 34

5 53 35
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6 54 36

7 55 37

8 56 38

9 57 39
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UNICODEUNICODE
UNICODE uses a 16-bit word to 

  i l  hrepresent a single character
It can represent 65,536 different 
characters
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Representing Colors on a Video Representing Colors on a Video 
DisplayDisplay

An image is composed pixels (Picture elements)
Different display modes use different data Different display modes use different data 
representations for each pixel
A mixture of red, green, and blue form a specific 
color on the display
Color depth describes amount of each red, 
green, and blue for a mixture on a pixel -- 8, 16, 
or 24 bits
24-bit display, each color has 256 different 
shades
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shades
16-bit display, each color has 5 or 6 bits of 
shades
8-bit display, each color has 2 or 3 bits of 
shades

Representing Colors on a Video Representing Colors on a Video 
DisplayDisplay
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Representing Colors on a Video Representing Colors on a Video 
DisplayDisplay

A hardware palette allows an 8-bit 
di l   di l   ifi  l  h  display to display a specific color chosen 
from the colors of 24-bit display
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Audio Information Audio Information 
RepresentationRepresentation

Audible sounds are the 
result of vibrating air 
molecules quickly back molecules quickly back 
and forth between 20 
and 20,000 times per 
second (Hz)
A computer is capable of 
generate a signal that 
repeatedly apply 
alternate logic 0 and 1 
for a short period of time 
-- square wave
Create a stream of bits 
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fed to the speaker every 
1/40,000 seconds with 
1s and 0s, we get a 20 
kHz sound
It requires 5,000 bytes 
per second to generate 
20 kHz sound

Audio Audio Information Information 
RepresentationRepresentation

Analog audio signals are much more complex than square 
waves, that is only two different voltage levels are not 
enough for representationenough for representation
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Analog to Digital Analog to Digital ---- SamplingSampling
Sampling is done at regular intervals of time, often small 
fractions of a second. 
Like frequencies, sampling rates are measured in hertz. 
The precision in which a sample represents the actual 
amplitude of the waveform at the instant the sample is taken 
depends on the sample size or number of bits (also called bit 
depth) used in the binary representation of the amplitude 
value. 
An 8-bit sample can resolve 256 (=28) different amplitude or 
voltage values -- 40,000 bytes/second
A 16-bit converter can resolve 65,536 (=216) values -- 80,000 , ( ) ,
bytes/second
Sound recorded on audio CDs is stored as 16-bit samples. 
When a sample is taken, the actual value is rounded to the 
nearest value that can be represented by the number of bits 
in a sample.
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Analog to Digital Analog to Digital ---- SamplingSampling
The minimum amount of storage (in bytes) 
required for a digitized signal is the product of required for a digitized signal is the product of 

the sample rate (in samples/sec), 
the sample size (in bytes; one byte equals 8 bits), 
and the signal duration (seconds). 

The CD standard sampling rate of 44.1 kHz means 
that the waveform is sampled 44100 times per 
second.
Thus, a 10-second signal sampled at 44.1 kHz with 
16 bit (2 b t ) i i  i  882 000 b t  (  16-bit (2-byte) precision requires 882,000 bytes (= 
10 sec x 44,100 samples/sec x 2 bytes/sample), or 
about 861 Kbytes of storage (1 Kbyte = 1024 
bytes). 
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Audio FormatsAudio Formats
MIDI

Musical Instrument Digital Interface is not technically an audio format, 
but it has recently become predominant as one of the main methods but it has recently become predominant as one of the main methods 
for delivering audio over the Internet. This is due to the fact that the 
file size are tiny compared to any other audio formats. The beauty 
behind MIDI files is the fact that it only save the data on what notes 
the instrument should play rather than the whole complex structure of 
sound waves.

WAV
This format has become the standard audio format for sound files on 
the Internet. Almost every browser has built-in WAV playback support. 
The default Windows WAV format is PCM, which is basically 
uncompressed sound data, and these files tend to be rather large.  
However, many forms of compressed WAV files are available.
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MPEG (Layer 3)
This is latest of MPEG audio coding.  It achieves high-fidelity sound 
quality, with a significant reduction in file size. It can shrink down CD 
audio by a factor of 12, without losing any clarity and quality. The 
encoded file are small enough to be transmitted at today’s Internet 
speeds, this is one of the main reasons why mp3’s are attracting so 
many users in the Internet community.


