College Algebra
 Workshop 5-Part 3

Unit 5 (Part 3) Piecewise-defined Functions and Exponential Functions

1. Let $F(x)= \begin{cases}x^{2}, & \text { if } 0<x<2 \\ 4, & \text { if } 2 \leq x<4 \\ 7-x, & \text { if } 4 \leq x \leq 6\end{cases}$
a. Evaluate each of the following outputs by hand:
i. $F(2)$
ii. $F(4)$
iii. $F(3)$
iv. $F(F(3))$
b. Write the domain of F.

For each function graphed in Problems 2 and 3, state the graphing window used and then explain why the graph is not a good graph of the function.
2.

Graph of $y= \begin{cases}10 & , \text { if } x \leq-2 \\ |x-7| & , \text { if }-2<x \leq 4 \\ x-2 & , \text { if } x>4\end{cases}$
3.

4. Suppose the exponential function B has the symbol rule $B(x)=4\left(\frac{3}{2}\right)^{x}$.
a. Evaluate each of the following outputs by hand:
i. $B(-2)$
ii. $B(0)$
iii. $B(2)$
iv. $B(4)$
b. If a table is made for B where the input numbers increase by a constant amount, then the output values will \qquad ?.
i. Increase by a constant amount
ii. Increase by a constant percentage
iii. Decrease by a constant amount
iv. Decrease by a constant percentage
c. Which of the following graphs could be the graph of the function B ?
i.

ii.

iii.

iv. None of these
5. For each of the following quantities that is growing or decaying by a constant percentage, find the growth factor for the quantity.
a. The quantity is growing by 8% per year.
b. The quantity is growing by $\frac{1}{4} \%$ per month.
c. The quantity is decaying by 12% per year.
d. For each day that passes, the amount of the quantity remaining is 30% of the amount on the previous day.
6. A sample of the radioactive element radium loses 4% of its mass each century. Let's assume that the function $A(t)$ outputs the amount remaining of an initial mass of 10 grams of radium after t centuries.
a. Why is it appropriate to assume that A is an exponential function?
b. Find the values of the initial value c and the growth factor b for the function A. Then write the symbol rule for A.
c. Find the amount of radium remaining after 3 centuries.
d. Use a computer or calculator to sketch a good graph of A.

e. Use the graph from part d to find the half-life of radium. That is, after what amount of time will the remaining amount of the initial mass of radium be 5 grams?
f. In part e, you have in effect solved an equation. Write this equation.

In Practice Exercises 7-10, graphically estimate the solutions to each of the given equations and inequalities.
7. $1.2 e^{x}=5.5$
8. $1.2 e^{x} \geq 5.5$
9. $\left(\frac{3}{4}\right)^{x}=10$
10. $\left(\frac{3}{4}\right)^{x}-10<0$

