

iv. B(4)

1. Let
$$F(x) = \begin{cases} x^2, & \text{if } 0 < x < 2\\ 4, & \text{if } 2 \le x < 4\\ 7-x, & \text{if } 4 \le x \le 6 \end{cases}$$

a. Evaluate each of the following outputs by hand:
i.
$$F(2)$$
 ii. $F(4)$ **iii.** $F(3)$ **iv.** $F(F(3))$

b. Write the domain of F.

For each function graphed in Problems 2 and 3, state the graphing window used and then explain why the graph is *not* a good graph of the function.

a. Evaluate each of the following outputs by hand: **i.** B(-2) **ii.** B(0) **iii.** B(2)

b. If a table is made for B where the input numbers increase by a constant amount, then the output values will _____?
i. Increase by a constant amount _____ii. Increase by a constant percentage

iii. Decrease by a constant amount iv. Decrease by a constant percentage

c. Which of the following graphs *could be* the graph of the function *B*?

iv. None of these

5. For each of the following quantities that is growing or decaying by a constant percentage, find the growth factor for the quantity.a. The quantity is growing by 8% per year.

b. The quantity is growing by $\frac{1}{4}$ % per month.

c. The quantity is decaying by 12% per year.

d. For each day that passes, the amount of the quantity remaining is 30% of the amount on the previous day.

6. A sample of the radioactive element radium loses 4% of its mass each *century*. Let's assume that the function A(t) outputs the amount remaining of an initial mass of 10 grams of radium after t centuries.

a. Why is it appropriate to assume that A is an exponential function?

b. Find the values of the initial value c and the growth factor b for the function A. Then write the symbol rule for A.

c. Find the amount of radium remaining after 3 centuries.

d. Use a computer or calculator to sketch a good graph of *A*.

e. Use the graph from part d to find the half-life of radium. That is, after what amount of time will the remaining amount of the initial mass of radium be 5 grams?

f. In part e, you have in effect solved an equation. Write this equation.

In Practice Exercises 7–10, *graphically* estimate the solutions to each of the given equations and inequalities. **7.** $1.2e^x = 5.5$

8. $1.2e^x \ge 5.5$

9.
$$\left(\frac{3}{4}\right)^x = 10$$

10. $\left(\frac{3}{4}\right)^x - 10 < 0$