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Introduction 

• A procedure is a collection of statements that 
performs a task 
– Event handlers are a type of procedure 

• A function is a collection of statements that 
performs a task and returns a value to the part of 
the program that executed it 
– You have already worked with Visual Basic’s built-in 

functions, such as CInt and IsNumeric 

• A method can be either a procedure or a function 
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Section 6.1 

PROCEDURES 

You can write your own general purpose procedures that perform 
specific tasks. General purpose procedures are not triggered by 
events, but are called from statements in other procedures. 
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Procedure Uses 

• An event handler is a type of procedure 
– Automatically executed when an event such as a 

mouse click occurs 
• General purpose procedures are triggered by 

statements in other procedures, not by events  
• Procedures help simplify & modularize code by: 

– Breaking it into small, manageable pieces 
– Performing a task that is needed repeatedly 
– Dividing a program into a set of logical tasks 

• Tutorial 6-1 examines an application with a 
procedure 
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Declaring a Procedure 

• The general format of a procedure declaration is as follows: 
 
 
 

• AccessSpecifier is optional and establishes accessibility to the program 
• Sub and End are keywords 
• ProcedureName used to refer to procedure 

– Use Pascal casing to capitalize 1st character of the name and each 
new word in the name 

• ParameterList is a list of variables or values being passed to the sub 
procedure 

• Tutorial 6-2 guides you through the process of writing procedures 
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[AccessSpecifier] Sub ProcedureName ([ParameterList]) 
   [Statements] 
End Sub 
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Static Local Variables 

• Variables needed only in a procedure, should be 
declared within that procedure 
– Creates a local variable with scope only within the 

procedure where declared 
– Local variable values are not saved from one 

procedure call to the next 
• To save value between procedure calls, use Static 

keyword to create a static local variable 
 
– Scope is still only within the procedure 
– But variable exists for lifetime of application 
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Static VariableName As DataType 
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Section 6.2 

PASSING ARGUMENTS TO 
PROCEDURES 

When calling a procedure, you can pass it values known as 
arguments. 
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Arguments  

• An Argument is value passed to a procedure 
• For example: 

 
– Calls the CInt function 
– Passes txtInput.Text as an argument 

 
• Two ways to pass arguments 

–  by value  is a temporary copy of the original argument 
–  by reference is the original argument and can be changed 
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CInt(txtInput.Text) 
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Passing Arguments By Value 

 
 
 

 
 

• intNumber declared as an integer argument 
• Storage location intNumber created by procedure 
• A value, 5 in this case, must be supplied and is copied into the storage 

location for intNumber 
• The DisplayValue procedure then executes 
• Tutorial 6-3 demonstrates passing arguments 
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DisplayValue(5)   ' Call DisplayValue procedure 
 
 
Sub DisplayValue(ByVal intNumber As Integer) 
 ' This procedure displays a value in a message box. 
 MessageBox.Show(intNumber.ToString) 
End Sub 
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Passing Multiple Arguments 

 
 
 
 
 
 
 

• Multiple arguments separated by commas 
• Value of first argument is copied to first 
• Second to second, etc. 
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ShowSum(intValue1, intValue2)  ' Call ShowSum procedure 
 
 
Sub ShowSum(ByVal intNum1 As Integer, ByVal intNum2 As Integer) 
   Dim intSum As Integer 'Local variable to hold a sum 
   'Get the sum of the two arguments. 
   intSum = intNum1 + intNum2 
   'Display the sum. 
   MessageBox.Show("The sum is " & intSum.ToString()) 
End Sub 
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More about Passing Arguments by Reference 

• Arguments are usually passed ByVal 
– New storage location created for procedure 
– Storage location gets a copy of the value 
– Any changes in value are made to the copy 
– Calling procedure won’t “see” the changes 

 
• Arguments can also be passed ByRef 

– Procedure points to (references) argument’s original storage location 
– Any changes are made to the original value 
– Calling procedure “sees” the changes 

 
• Tutorial 6-4 demonstrates the difference between ByVal and ByRef 
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Working with ByVal and ByRef 

• Passing the argument ByVal 
– Does not change the 

value of intNumber 
 

 

• Passing the argument ByRef 
– Allows the value of 

intNumber to change 
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Section 6.3 

FUNCTIONS 

A function returns a value to the part of the program that called the 
function. 
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Declaring a Function 

 
 
 

• New keyword Function 
• Also new is As DataType which states the data 

type of the value to be returned 
• Return value is specified in a Return 

expression 
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[AccessSpecifier] Function FunctionName ([ParameterList]) As DataType 
   [Statements] 
End Function 
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Function Call Example 

 
 
 
 

 
• The Sum function 

– Passes the variables dblValue1 and dblValue2 as arguments  
– Data types must agree with parameter list 
– Assigns the value returned by the Sum function to the variable 

dblTotal, agrees with return value 
• Tutorial 6-5 demonstrates function use 
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dblTotal = Sum(dblValue1, dblValue2) 
 
 
Function Sum(ByVal dblNum1 As Double, ByVal dblNum2 As Double) As Double 
   Return dblNum1 + dblNum2 
End Function 
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Returning Nonnumeric Values 

• Functions can return nonnumeric values, such as strings and 
Boolean values 
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strCustomer = FullName("John", "Martin") 
 
Function FullName(ByVal strFirst As String,  
                                    ByVal strLast As String) As String 
   ' Local variable to hold the full name 
   Dim strName As String 
   ' Append the last name to the first 
   ' name and assign the result to strName. 
   strName = strFirst & " " & strLast 
   ' Return the full name. 
   Return strName 
End Function 
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Section 6.4 

MORE ABOUT DEBUGGING: STEPPING INTO, OVER, 
AND OUT OF PROCEDURES AND FUNCTIONS 

Visual Basic debugging commands allow you to single-step through applications with 
procedure and function calls. The Step Into command allows you to single-step through a 
called procedure or function. The Step Over command allows you to execute a procedure or 
function call without single-stepping through its lines. The Step Out command allows you to 
execute all remaining lines of a procedure or function you are debugging without stepping 
through them. 
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The Step Into Command 

• The Step Into command  
– Continue to debug by single-stepping through a 

procedure 
• Press the F8 key 
• Select Debug from the menu bar, and then 

select Step Into from the Debug menu 
• Click the Step Into button on the Debug Toolbar, 

if the toolbar is visible 
• Tutorial 6-6 demonstrates the Step Into command 
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The Step Over Command 

• The Step Over command  
– Run procedure without single-stepping, continue 

single-step after the call 
• Press the Shift + F8 key 
• Select Debug from the menu bar, and then 

select Step Over from the Debug menu 
• Click the Step Over button on the Debug 

Toolbar, if the toolbar is visible 
• Tutorial 6-7 demonstrates the Step Over command 

 

 Chapter 6 – Slide 20 



Copyright © 2011 Pearson Addison-Wesley 

The Step Out Command 

•  The Step Out command  
– End single-stepping in procedure, continue single-

step after the call 
• Press the Ctrl + Shift + F8 key 
• Select Debug from the menu bar, and then 

select Step Out from the Debug menu 
• Click the Step Out button on the Debug Toolbar, 

if the toolbar is visible 
• Tutorial 6-8 demonstrates the Step Out command 
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Section 6.5 

FOCUS ON PROGRAM DESIGN AND PROBLEM SOLVING: 
BUILDING THE BAGEL AND COFFEE PRICE CALCULATOR 

APPLICATION 

In this section you build the Bagel and Coffee Price Calculator 
application. It uses procedures and functions to calculate the total 
of a customer order. 
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Introduction 

• The owner of Brandi’s Bagel 
House has asked you to write an 
application that her staff can use 
to record an order as it is called in 

• Customers may call in and order 
– White and whole wheat 

bagels with a variety of 
toppings 

– Three different types of 
coffee 

• The application should display  
– The total of the order, 

including 6% sales tax 

• Bagels: 
– White bagel  $1.25 
– Whole wheat bagel  $1.50 

• Toppings: 
– Cream cheese  $0.50 
– Butter   $0.25 
– Blueberry jam  $0.75 
– Raspberry jam  $0.75 
– Peach jelly   $0.75 

• Coffee: 
– Regular coffee  $1.25 
– Cappuccino  $2.00 
– Café au lait  $1.75 
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(Note: Delivery for coffee alone is not offered.) 
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Sketch of Brandi’s Bagel House Form 
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Description of Click Event Handlers 
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  Name Description 

btnCalculate_Click 
Calculates and displays the total of an order 
Calls the following functions:  
BagelCost, CoffeeCost, ToppingCost, and CalcTax 

btnExit_Click Ends the application 

btnReset_Click 
Resets the controls on the form to their initial values  
Calls the following procedures: 
ResetBagels, ResetToppings, ResetCoffee, and ResetPrice 
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btnCalculate_Click  
Flowchart and Pseudocode 
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subtotal = BagelCost() + ToppingCost() + CoffeeCost() 
tax = CalcTax(subtotal) 
total = subtotal + tax 
lblSubtotal.Text = subtotal 
lblTax.Text = tax 
lblTotal.Text = total 
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btnReset_Click  
Flowchart and Pseudocode 
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ResetBagels() 
ResetToppings() 
ResetCoffee() 
ResetPrice() 
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Description of Functions 
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  Name Description 

BagelCost Returns the price of the selected bagel 

ToppingCost Returns the total price of the selected toppings 

CoffeeCost Returns the price of the selected coffee 

CalcTax 
Accepts the amount of a sale as an argument 
Returns the amount of sales tax on that amount 
The tax rate is stored in a class-level constant, decTAX_RATE 
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BagelCost Function 
Flowchart and Pseudocode 
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If White Is Selected Then 
   cost of bagel = 1.25 
Else 
   cost of bagel = 1.5 
End If 
Return cost of bagel 
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ToppingCost Function 
Flowchart and Pseudocode 
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cost of topping = 0.0 
If Cream Cheese Is Selected Then 
   cost of topping += 0.5 
End If 
If Butter Is Selected Then 
   cost of topping += 0.25 
End If 
If Blueberry Is Selected Then 
   cost of topping += 0.75 
End If 
If Raspberry Is Selected Then 
   cost of topping += 0.75 
End If 
If Peach Is Selected Then 
   cost of topping += 0.75 
End If 
Return cost of topping 
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CoffeeCost Function 
Flowchart and Pseudocode 
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If No Coffee Is Selected Then 
   cost of coffee = 0 
ElseIf Regular Coffee Is Selected Then 
   cost of coffee = 1.25 
ElseIf Cappuccino Is Selected Then 
   cost of coffee = 2 
ElseIf Café Au Lait Is Selected Then 
   cost of coffee = 1.75 
End If 
Return cost of coffee 
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CalcTax Function 
Flowchart and Pseudocode 
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sales tax = amount * tax rate 
Return sales tax 
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Description of Procedures 
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  Name Description 

ResetBagels Resets the bagel type radio buttons to their initial value 

ResetToppings Resets the topping check boxes to unchecked 

ResetCoffee Resets the coffee radio buttons to their initial values 

ResetPrice Sets the Text property of the lblSubtotal, lblTax, and lblTotal labels 
to String.Empty 
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ResetBagels Procedure 
Flowchart and Pseudocode 
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radWhite = Selected 
radWheat = Deselected 
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ResetToppings Procedure 
Flowchart and Pseudocode 
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chkCreamCheese = Unchecked 
chkButter = Unchecked 
chkBlueberry = Unchecked 
chkRaspberry = Unchecked 
chkPeach = Unchecked 
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ResetCoffee Procedure 
Flowchart and Pseudocode 
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radNoCoffee = Deselected 
radRegCoffee = Selected 
radCappuccino = Deselected 
radCafeAuLait = Deselected 
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ResetPrice Procedure 
Flowchart and Pseudocode 
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lblSubtotal.Text = String.Empty 
lblTax.Text = String.Empty 
lblTotal.Text = String.Empty 
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Brandi’s Bagel House Form 
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