

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Chapter 6

Procedures and Functions

Copyright © 2011 Pearson Addison-Wesley

Introduction

• A procedure is a collection of statements that
performs a task
– Event handlers are a type of procedure

• A function is a collection of statements that
performs a task and returns a value to the part of
the program that executed it
– You have already worked with Visual Basic’s built-in

functions, such as CInt and IsNumeric

• A method can be either a procedure or a function

Chapter 6 – Slide 3

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 6.1

PROCEDURES

You can write your own general purpose procedures that perform
specific tasks. General purpose procedures are not triggered by
events, but are called from statements in other procedures.

Copyright © 2011 Pearson Addison-Wesley

Procedure Uses

• An event handler is a type of procedure
– Automatically executed when an event such as a

mouse click occurs
• General purpose procedures are triggered by

statements in other procedures, not by events
• Procedures help simplify & modularize code by:

– Breaking it into small, manageable pieces
– Performing a task that is needed repeatedly
– Dividing a program into a set of logical tasks

• Tutorial 6-1 examines an application with a
procedure

Chapter 6 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

Declaring a Procedure

• The general format of a procedure declaration is as follows:

• AccessSpecifier is optional and establishes accessibility to the program
• Sub and End are keywords
• ProcedureName used to refer to procedure

– Use Pascal casing to capitalize 1st character of the name and each
new word in the name

• ParameterList is a list of variables or values being passed to the sub
procedure

• Tutorial 6-2 guides you through the process of writing procedures

Chapter 6 – Slide 6

[AccessSpecifier] Sub ProcedureName ([ParameterList])
 [Statements]
End Sub

Copyright © 2011 Pearson Addison-Wesley

Static Local Variables

• Variables needed only in a procedure, should be
declared within that procedure
– Creates a local variable with scope only within the

procedure where declared
– Local variable values are not saved from one

procedure call to the next
• To save value between procedure calls, use Static

keyword to create a static local variable

– Scope is still only within the procedure
– But variable exists for lifetime of application

Chapter 6 – Slide 7

Static VariableName As DataType

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 6.2

PASSING ARGUMENTS TO
PROCEDURES

When calling a procedure, you can pass it values known as
arguments.

Copyright © 2011 Pearson Addison-Wesley

Arguments

• An Argument is value passed to a procedure
• For example:

– Calls the CInt function
– Passes txtInput.Text as an argument

• Two ways to pass arguments

– by value is a temporary copy of the original argument
– by reference is the original argument and can be changed

Chapter 6 – Slide 9

CInt(txtInput.Text)

Copyright © 2011 Pearson Addison-Wesley

Passing Arguments By Value

• intNumber declared as an integer argument
• Storage location intNumber created by procedure
• A value, 5 in this case, must be supplied and is copied into the storage

location for intNumber
• The DisplayValue procedure then executes
• Tutorial 6-3 demonstrates passing arguments

 Chapter 6 – Slide 10

DisplayValue(5) ' Call DisplayValue procedure

Sub DisplayValue(ByVal intNumber As Integer)
 ' This procedure displays a value in a message box.
 MessageBox.Show(intNumber.ToString)
End Sub

Copyright © 2011 Pearson Addison-Wesley

Passing Multiple Arguments

• Multiple arguments separated by commas
• Value of first argument is copied to first
• Second to second, etc.

Chapter 6 – Slide 11

ShowSum(intValue1, intValue2) ' Call ShowSum procedure

Sub ShowSum(ByVal intNum1 As Integer, ByVal intNum2 As Integer)
 Dim intSum As Integer 'Local variable to hold a sum
 'Get the sum of the two arguments.
 intSum = intNum1 + intNum2
 'Display the sum.
 MessageBox.Show("The sum is " & intSum.ToString())
End Sub

Copyright © 2011 Pearson Addison-Wesley

More about Passing Arguments by Reference

• Arguments are usually passed ByVal
– New storage location created for procedure
– Storage location gets a copy of the value
– Any changes in value are made to the copy
– Calling procedure won’t “see” the changes

• Arguments can also be passed ByRef

– Procedure points to (references) argument’s original storage location
– Any changes are made to the original value
– Calling procedure “sees” the changes

• Tutorial 6-4 demonstrates the difference between ByVal and ByRef

Chapter 6 – Slide 12

Copyright © 2011 Pearson Addison-Wesley

Working with ByVal and ByRef

• Passing the argument ByVal
– Does not change the

value of intNumber

• Passing the argument ByRef
– Allows the value of

intNumber to change

Chapter 6 – Slide 13

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 6.3

FUNCTIONS

A function returns a value to the part of the program that called the
function.

Copyright © 2011 Pearson Addison-Wesley

Declaring a Function

• New keyword Function
• Also new is As DataType which states the data

type of the value to be returned
• Return value is specified in a Return

expression

Chapter 6 – Slide 15

[AccessSpecifier] Function FunctionName ([ParameterList]) As DataType
 [Statements]
End Function

Copyright © 2011 Pearson Addison-Wesley

Function Call Example

• The Sum function

– Passes the variables dblValue1 and dblValue2 as arguments
– Data types must agree with parameter list
– Assigns the value returned by the Sum function to the variable

dblTotal, agrees with return value
• Tutorial 6-5 demonstrates function use

Chapter 6 – Slide 16

dblTotal = Sum(dblValue1, dblValue2)

Function Sum(ByVal dblNum1 As Double, ByVal dblNum2 As Double) As Double
 Return dblNum1 + dblNum2
End Function

Copyright © 2011 Pearson Addison-Wesley

Returning Nonnumeric Values

• Functions can return nonnumeric values, such as strings and
Boolean values

Chapter 6 – Slide 17

strCustomer = FullName("John", "Martin")

Function FullName(ByVal strFirst As String,
 ByVal strLast As String) As String
 ' Local variable to hold the full name
 Dim strName As String
 ' Append the last name to the first
 ' name and assign the result to strName.
 strName = strFirst & " " & strLast
 ' Return the full name.
 Return strName
End Function

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 6.4

MORE ABOUT DEBUGGING: STEPPING INTO, OVER,
AND OUT OF PROCEDURES AND FUNCTIONS

Visual Basic debugging commands allow you to single-step through applications with
procedure and function calls. The Step Into command allows you to single-step through a
called procedure or function. The Step Over command allows you to execute a procedure or
function call without single-stepping through its lines. The Step Out command allows you to
execute all remaining lines of a procedure or function you are debugging without stepping
through them.

Copyright © 2011 Pearson Addison-Wesley

The Step Into Command

• The Step Into command
– Continue to debug by single-stepping through a

procedure
• Press the F8 key
• Select Debug from the menu bar, and then

select Step Into from the Debug menu
• Click the Step Into button on the Debug Toolbar,

if the toolbar is visible
• Tutorial 6-6 demonstrates the Step Into command

Chapter 6 – Slide 19

Copyright © 2011 Pearson Addison-Wesley

The Step Over Command

• The Step Over command
– Run procedure without single-stepping, continue

single-step after the call
• Press the Shift + F8 key
• Select Debug from the menu bar, and then

select Step Over from the Debug menu
• Click the Step Over button on the Debug

Toolbar, if the toolbar is visible
• Tutorial 6-7 demonstrates the Step Over command

 Chapter 6 – Slide 20

Copyright © 2011 Pearson Addison-Wesley

The Step Out Command

• The Step Out command
– End single-stepping in procedure, continue single-

step after the call
• Press the Ctrl + Shift + F8 key
• Select Debug from the menu bar, and then

select Step Out from the Debug menu
• Click the Step Out button on the Debug Toolbar,

if the toolbar is visible
• Tutorial 6-8 demonstrates the Step Out command

 Chapter 6 – Slide 21

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 6.5

FOCUS ON PROGRAM DESIGN AND PROBLEM SOLVING:
BUILDING THE BAGEL AND COFFEE PRICE CALCULATOR

APPLICATION

In this section you build the Bagel and Coffee Price Calculator
application. It uses procedures and functions to calculate the total
of a customer order.

Copyright © 2011 Pearson Addison-Wesley

Introduction

• The owner of Brandi’s Bagel
House has asked you to write an
application that her staff can use
to record an order as it is called in

• Customers may call in and order
– White and whole wheat

bagels with a variety of
toppings

– Three different types of
coffee

• The application should display
– The total of the order,

including 6% sales tax

• Bagels:
– White bagel $1.25
– Whole wheat bagel $1.50

• Toppings:
– Cream cheese $0.50
– Butter $0.25
– Blueberry jam $0.75
– Raspberry jam $0.75
– Peach jelly $0.75

• Coffee:
– Regular coffee $1.25
– Cappuccino $2.00
– Café au lait $1.75

Chapter 6 – Slide 23

(Note: Delivery for coffee alone is not offered.)

Copyright © 2011 Pearson Addison-Wesley

Sketch of Brandi’s Bagel House Form

Chapter 6 – Slide 24

Copyright © 2011 Pearson Addison-Wesley

Description of Click Event Handlers

Chapter 6 – Slide 25

 Name Description

btnCalculate_Click
Calculates and displays the total of an order
Calls the following functions:
BagelCost, CoffeeCost, ToppingCost, and CalcTax

btnExit_Click Ends the application

btnReset_Click
Resets the controls on the form to their initial values
Calls the following procedures:
ResetBagels, ResetToppings, ResetCoffee, and ResetPrice

Copyright © 2011 Pearson Addison-Wesley

btnCalculate_Click
Flowchart and Pseudocode

Chapter 6 – Slide 26

subtotal = BagelCost() + ToppingCost() + CoffeeCost()
tax = CalcTax(subtotal)
total = subtotal + tax
lblSubtotal.Text = subtotal
lblTax.Text = tax
lblTotal.Text = total

Copyright © 2011 Pearson Addison-Wesley

btnReset_Click
Flowchart and Pseudocode

Chapter 6 – Slide 27

ResetBagels()
ResetToppings()
ResetCoffee()
ResetPrice()

Copyright © 2011 Pearson Addison-Wesley

Description of Functions

Chapter 6 – Slide 28

 Name Description

BagelCost Returns the price of the selected bagel

ToppingCost Returns the total price of the selected toppings

CoffeeCost Returns the price of the selected coffee

CalcTax
Accepts the amount of a sale as an argument
Returns the amount of sales tax on that amount
The tax rate is stored in a class-level constant, decTAX_RATE

Copyright © 2011 Pearson Addison-Wesley

BagelCost Function
Flowchart and Pseudocode

Chapter 6 – Slide 29

If White Is Selected Then
 cost of bagel = 1.25
Else
 cost of bagel = 1.5
End If
Return cost of bagel

Copyright © 2011 Pearson Addison-Wesley

ToppingCost Function
Flowchart and Pseudocode

Chapter 6 – Slide 30

cost of topping = 0.0
If Cream Cheese Is Selected Then
 cost of topping += 0.5
End If
If Butter Is Selected Then
 cost of topping += 0.25
End If
If Blueberry Is Selected Then
 cost of topping += 0.75
End If
If Raspberry Is Selected Then
 cost of topping += 0.75
End If
If Peach Is Selected Then
 cost of topping += 0.75
End If
Return cost of topping

Copyright © 2011 Pearson Addison-Wesley

CoffeeCost Function
Flowchart and Pseudocode

Chapter 6 – Slide 31

If No Coffee Is Selected Then
 cost of coffee = 0
ElseIf Regular Coffee Is Selected Then
 cost of coffee = 1.25
ElseIf Cappuccino Is Selected Then
 cost of coffee = 2
ElseIf Café Au Lait Is Selected Then
 cost of coffee = 1.75
End If
Return cost of coffee

Copyright © 2011 Pearson Addison-Wesley

CalcTax Function
Flowchart and Pseudocode

Chapter 6 – Slide 32

sales tax = amount * tax rate
Return sales tax

Copyright © 2011 Pearson Addison-Wesley

Description of Procedures

Chapter 6 – Slide 33

 Name Description

ResetBagels Resets the bagel type radio buttons to their initial value

ResetToppings Resets the topping check boxes to unchecked

ResetCoffee Resets the coffee radio buttons to their initial values

ResetPrice Sets the Text property of the lblSubtotal, lblTax, and lblTotal labels
to String.Empty

Copyright © 2011 Pearson Addison-Wesley

ResetBagels Procedure
Flowchart and Pseudocode

Chapter 6 – Slide 34

radWhite = Selected
radWheat = Deselected

Copyright © 2011 Pearson Addison-Wesley

ResetToppings Procedure
Flowchart and Pseudocode

Chapter 6 – Slide 35

chkCreamCheese = Unchecked
chkButter = Unchecked
chkBlueberry = Unchecked
chkRaspberry = Unchecked
chkPeach = Unchecked

Copyright © 2011 Pearson Addison-Wesley

ResetCoffee Procedure
Flowchart and Pseudocode

Chapter 6 – Slide 36

radNoCoffee = Deselected
radRegCoffee = Selected
radCappuccino = Deselected
radCafeAuLait = Deselected

Copyright © 2011 Pearson Addison-Wesley

ResetPrice Procedure
Flowchart and Pseudocode

Chapter 6 – Slide 37

lblSubtotal.Text = String.Empty
lblTax.Text = String.Empty
lblTotal.Text = String.Empty

Copyright © 2011 Pearson Addison-Wesley

Brandi’s Bagel House Form

Chapter 6 – Slide 38

	Slide Number 1
	Chapter 6
	Introduction
	Procedures
	Procedure Uses
	Declaring a Procedure
	Static Local Variables
	Passing Arguments to Procedures
	Arguments
	Passing Arguments By Value
	Passing Multiple Arguments
	More about Passing Arguments by Reference
	Working with ByVal and ByRef
	Functions
	Declaring a Function
	Function Call Example
	Returning Nonnumeric Values
	More about Debugging: Stepping Into, Over,�and Out of Procedures and Functions
	The Step Into Command
	The Step Over Command
	The Step Out Command
	Focus on Program Design and Problem Solving:�Building the Bagel and Coffee Price Calculator�Application
	Introduction
	Sketch of Brandi’s Bagel House Form
	Description of Click Event Handlers
	btnCalculate_Click �Flowchart and Pseudocode
	btnReset_Click �Flowchart and Pseudocode
	Description of Functions
	BagelCost Function�Flowchart and Pseudocode
	ToppingCost Function�Flowchart and Pseudocode
	CoffeeCost Function�Flowchart and Pseudocode
	CalcTax Function�Flowchart and Pseudocode
	Description of Procedures
	ResetBagels Procedure�Flowchart and Pseudocode
	ResetToppings Procedure�Flowchart and Pseudocode
	ResetCoffee Procedure�Flowchart and Pseudocode
	ResetPrice Procedure�Flowchart and Pseudocode
	Brandi’s Bagel House Form

