CS4315 Operating Systems

Lab Exercise – Chapter 10
Implement a program on Grid for the dining philosophers’ problem as follows. The program should use five Pthreads to simulate philosophers and declare an array of five semaphores to represent five forks.

1. Write the program without considering deadlock. Your program should create five Pthreads that run the same procedure as follows (Note: This is pseudo-code).

Make each philosopher print a message at every event (viz., request, allocation, release). The message should show the philosopher number and the relevant fork number, as shown in the above procedure.
Run the program and see whether it will run into deadlock.

2. Write another program that makes Philosopher 4 request the forks in the other order (the algorithm below). Observe that the deadlock will never occur.

Turn in the program for each version in Blackboard Learn by the due date (see the course schedule).

philosopher(int i){

 while (TRUE) {

 // Think

 // Eat

 printf(“Philosopher %d requests fork %d\n”, i, i);

 P(fork[i]); /* Pick up left fork */

 printf(“Philosopher %D acquired fork %d\n”, i, i);

 printf(“Philosopher %d requests fork %d\n”, i, (i+1) mod 5);

 P(fork[(i+1) mod 5]); /* Pick up right fork */

 printf(“Philosopher %d acquired fork %d\n”, i, (i+1) mod 5);

 eat();

 printf(“Philosopher %d releases fork %d\n”, i, (i+1) mod 5);

 V(fork[(i+1) mod 5]);

 printf(“Philosopher %d releases fork %d\n”, i, i);

 V(fork[i]);

 }

}

semaphore fork[5];

fork[0] = fork[1] = fork[2] = fork[3] = fork[4] = 1;

fork(philosopher, 1, 0);

fork(philosopher, 1, 1);

fork(philosopher, 1, 2);

fork(philosopher, 1, 3);

fork(philosopher, 1, 4);

philosopher(int i){

 Same as above

}

philosopher4(){

 while (TRUE) {

 // Think

 // Eat

 printf(“Philosopher 4 requests fork 0\n”);

 P(fork[0]); /* Pick up right fork */

 printf(“Philosopher 4 acquired fork 0\n”);

 printf(“Philosopher 4 requests fork 4\n”);

 P(fork[4]); /* Pick up left fork */

 printf(“Philosopher 4 acquired fork 4\n”);

 eat();

 printf(“Philosopher 4 releases fork 4\n”);

 V(fork[4]);

 printf(“Philosopher 4 releases fork 0\n”);

 V(fork[0]);

 }

}

semaphore fork[5];

fork[0] = fork[1] = fork[2] = fork[3] = fork[4] = 1;

fork(philosopher, 1, 0);

fork(philosopher, 1, 1);

fork(philosopher, 1, 2);

fork(philosopher, 1, 3);

fork(philosopher4, 0);

