Primes and GCD

Def. A positive integer \(p \) greater that 1 is called **prime** if the only positive factors of \(p \) are 1 and \(p \), otherwise it is called **composite**.

In symbolic logic notation:

For \(p \in \mathbb{Z}, p > 1 \), if \(((a \mid p) \rightarrow (a = 1 \lor a = p)) \), then \(p \) is prime.

Example: The first 10 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29

Theorem THE FUNDAMENTAL THEOREM OF ARITHMETIC

Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of increasing size. (Here, a product can have zero, one, or more than one prime factor.)

Examples:

1. \(100 = 2^2 \cdot 5^2 \)
2. \(1024 = 2^{10} \)
3. \(840 = \) __________

Theorem There are infinitely many primes (Euclid’s proof).

Proof.
Number of primes and their distribution
Let $\pi(x)$ be the number of primes less than or equal to x. For instance $\pi(2) = 1$, $\pi(11) = 5$, $\pi(29) = 10$.

<table>
<thead>
<tr>
<th>x</th>
<th>$\pi(x)$</th>
<th>$x/\ln(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>168</td>
<td>145</td>
</tr>
<tr>
<td>10,000</td>
<td>1,229</td>
<td>1,086</td>
</tr>
<tr>
<td>100,000</td>
<td>9,592</td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td>78,498</td>
<td>72,838</td>
</tr>
<tr>
<td>10,000,000</td>
<td>664,579</td>
<td></td>
</tr>
<tr>
<td>100,000,000</td>
<td>5,761,455</td>
<td></td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>50,847,534</td>
<td></td>
</tr>
<tr>
<td>10,000,000,000</td>
<td>455,052,511</td>
<td></td>
</tr>
<tr>
<td>100,000,000,000</td>
<td>4,118,054,813</td>
<td></td>
</tr>
<tr>
<td>1,000,000,000,000</td>
<td>37,607,912,018</td>
<td></td>
</tr>
<tr>
<td>10,000,000,000,000</td>
<td>346,065,536,839</td>
<td></td>
</tr>
<tr>
<td>100,000,000,000,000</td>
<td>3,204,941,750,802</td>
<td></td>
</tr>
<tr>
<td>1,000,000,000,000,000</td>
<td>29,844,570,422,669</td>
<td></td>
</tr>
<tr>
<td>10,000,000,000,000,000</td>
<td>279,238,341,033,925</td>
<td></td>
</tr>
<tr>
<td>100,000,000,000,000,000</td>
<td>2,623,557,157,654,233</td>
<td></td>
</tr>
<tr>
<td>1,000,000,000,000,000,000</td>
<td>24,739,954,287,740,860</td>
<td></td>
</tr>
<tr>
<td>10,000,000,000,000,000,000</td>
<td>234,057,667,276,344,607</td>
<td></td>
</tr>
<tr>
<td>100,000,000,000,000,000,000</td>
<td>2,220,819,602,560,918,840</td>
<td></td>
</tr>
<tr>
<td>1,000,000,000,000,000,000,000</td>
<td>21,127,269,486,018,731,928</td>
<td></td>
</tr>
<tr>
<td>10,000,000,000,000,000,000,000,000</td>
<td>201,467,286,689,315,906,290</td>
<td></td>
</tr>
<tr>
<td>100,000,000,000,000,000,000,000,000,000</td>
<td>1,925,320,391,606,803,968,923</td>
<td></td>
</tr>
</tbody>
</table>

The Prime Number Theorem (1896)
The ratio of $\pi(x)$ and $x/\ln(x)$ approaches 1 as x grows without bound.

This implies that $\pi(x) \approx x/\ln(x)$ for large x.

Largest known prime number
$2^{43,112,609} - 1$ by S. Yates (2009) note that is has 12978189 digits
Theorem If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

Proof:

Example: Show that 101 is prime.

Goldback’s Conjecture (1742)
Every even integer greater than two is the sum of two primes.

GCD

Def. Let a and b be integers, not both zero. The largest integer d such that $d|a$ and $d|b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\gcd(a,b)$.

Examples:

1. The $\gcd(24,36) = 12$
2. The $\gcd(17,22) = 1$

One way to find the GCD of a and b is to use the prime factorizations of these integers.
Example: Find the $\gcd(120, 500)$.
Solution:
Since $120 = 2^3 \cdot 3 \cdot 5$ and $500 = 2^2 \cdot 5^3$,
$\gcd(120, 500) = 2^\min(3,2) \cdot 3^\min(1,0) \cdot 5^\min(1,3) = 2^2 \cdot 3^0 \cdot 5^1 = 20$.

Repeated use of the division algorithm provides another method for finding the gcd of two integers, it is called the Euclidean algorithm.

Example: Find the gcd of 414 and 662 using the Euclidean algorithm.

\[
\begin{align*}
662 &= 414 \cdot 1 + 248 \\
414 &= 248 \cdot 1 + 166 \\
248 &= 166 \cdot 1 + 82 \\
166 &= 82 \cdot 2 + 0 \\
82 &= 2 \cdot 41 + 0
\end{align*}
\]

The Euclidean Algorithm is a consequence of Lemma 1 p. 228

Lemma 1: Let $a = bq + r$, where a, b, q, and r are integers. Then $\gcd(a, b) = \gcd(b, r)$.

Proof in text p. 228.

Def. The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by $\text{lcm}(a, b)$.

Examples:
1. $\text{lcm}(12, 18) = 36$.
2. Find the lcm of $2^3 3^5 7^2$ and $2^4 3^3$.
3. Find the gcd of $2^3 3^5 7^2$ and $2^4 3^3$.
Theorem Let a and b be positive integers. Then

$$ab = \gcd(a,b) \cdot \lcm(a,b).$$

Proof: By the Fundamental Theorem of Arithmetic, $a = p_1^{n_1} p_2^{n_2} p_3^{n_3} \cdots p_m^{n_m}$ and $b = p_1^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_m^{k_m}$, where some of the n_i and k_i are possibly zero.

The formulae for \gcd and \lcm are as follows:

\[
\gcd(a,b) = p_1^{\min(n_1,k_1)} p_2^{\min(n_2,k_2)} p_3^{\min(n_3,k_3)} \cdots p_m^{\min(n_m,k_m)}
\]

and

\[
\lcm(a,b) = p_1^{\max(n_1,k_1)} p_2^{\max(n_2,k_2)} p_3^{\max(n_3,k_3)} \cdots p_m^{\max(n_m,k_m)}.
\]

By substitution, properties of exponents, and commutativity,

\[
\gcd(a,b) \cdot \lcm(a,b) = p_1^{\min(n_1,k_1)} p_2^{\min(n_2,k_2)} \cdots p_m^{\min(n_m,k_m)} \cdot p_1^{\max(n_1,k_1)} p_2^{\max(n_2,k_2)} \cdots p_m^{\max(n_m,k_m)}
\]

\[
= p_1^{\min(n_1,k_1) + \max(n_1,k_1)} p_2^{\min(n_2,k_2) + \max(n_2,k_2)} \cdots p_m^{\min(n_m,k_m) + \max(n_m,k_m)}
\]

\[
= p_1^{n_1 + k_1} p_2^{n_2 + k_2} \cdots p_m^{n_m + k_m}
\]

\[
= p_1^{n_1} p_2^{n_2} p_3^{n_3} \cdots p_m^{n_m} \cdot p_1^{k_1} p_2^{k_2} p_3^{k_3} \cdots p_m^{k_m}
\]

\[
= ab
\]