Math 1301 - Test 3 - Spring 2008 Student ID:

1. (12 Pts) In parts 1a and 1b, fill in each blank with the correct answer.

1a. For a Quadratic function, the formula can be written in the form $f(x) = ax^2 + bx + c$ where a is not zero.

1b. The graph of the function $f(x) = -x^2 - 4x - 5$ is a <u>Parabola</u> that has lead coefficient = $\frac{-1}{3}$, y-intercept = $\frac{-5}{3}$, x-intercepts = $\frac{N/A}{3}$ and vertex at $(\frac{-2}{3}, \frac{-1}{3})$.

 $m = f(-2) = -(-2)^2 - 4(-2) - 5 = -4 + 8 - 5 = -1$

1c. By hand, sketch the graph of the function

$$f(x) = -x^2 - 4x - 5$$

on the set of axes given here.

Plot sufficient points to get a good graph.

- 2. (8 Pts) Write the quadratic function $f(x) = x^2 + 6x 3$ in vertex-form by completing the square.

$$y = \chi^{2} + 6\chi - 3$$

$$y + 3 = \chi^{2} + 6\chi$$

$$y + 3 + 9 = \chi^{2} + 6\chi + 9$$

$$y + 12 = (\chi + 3)^{2}$$

$$y = (\chi + 3)^{2} - 12$$

$$\left(\frac{6}{z}\right)^2 = 9$$

5. (16 Pts) Find the exact solutions of each quadratic equation symbolically (by hand) and indicate the number

5a.
$$3(2x+7)(5x-1)=0$$

There are 2 real solutions and 0 complex solutions

5b.
$$\sqrt{(x+3)^2} = \sqrt{5}$$

 $\chi_{+3} = \pm \sqrt{5}$
 $\chi_{=} \pm \sqrt{5} -3$

The solution(s) are $-\frac{1}{\sqrt{5}}$ -3

There are 2 real solutions and 0 complex solutions

5c.
$$4x^2 = x + 1$$

The solution(s) are $\left(1 \pm \sqrt{17}\right)/8$

There are 2 real solutions and 0 complex solutions

$$\frac{-(-1)^{+}\sqrt{(-1)^{2}-4\cdot4(-1)}}{2\cdot4}=\frac{1^{+}\sqrt{17}}{8}$$

5d.
$$4x^2 = x - 1$$

The solution(s) are _____

There are \bigcirc real solutions and \bigcirc complex solutions

$$\frac{(-1)^{\pm}\sqrt{(-1)^{2}-4\cdot4\cdot1}}{2\cdot4} = \frac{1^{\pm}\sqrt{-15}}{8} = \frac{1^{\pm}\sqrt{15}i}{8}$$

3. (12 Pts) The graph of a quadratic function f(x) is given here. Use this graph to answer the following questions about the function f. Assume that the vertex and the y-intercept have integer coordinates.

- 3a. The sign of the leading coefficient is positive or negative)
- **3b.** The vertex has coordinates (2, 3)
- 3c. So far we have that $f(x) = a(x 2)^2 + 3$
- **3d.** The y intercept is (0, -1)
- 3e. Substitue the y intercept into the function in part c in order to find the lead coefficient a.

$$\chi=0$$
 $f(x)=-1$
 $-1=a(a-a)^2+3$
 $-1=4a+3$
 $-4=4a$

- 3f. Now write the function that fits the graph $f(x) = \frac{-1 \cdot (\chi 2) + 3}{-(\chi^2 + 4\chi 4 + 3)}$ $-\chi^2 + 4\chi 4 + 3$
- 4. (10 Pts) A baseball is hit straight up. The height of the baseball is a function of the elapsed time after it is hit. Suppose the height s(t) in feet after t seconds is given by

$$s(t) = -16t^2 + 112t + 3$$

4a. Write a sentence to interpret the practical meaning of the statement s(7) = 0.

After 7 seconds the ball is on the ground

4b. Write a sentence to interpret the practical meaning of the statement s(0) = 3.

Before the ball is hit the ball is 3 ft

4c. Find the maximum height of the baseball and the time needed to reach this height.

work at
$$\frac{-b}{2a} = \frac{-112}{2(-16)} = 3.5$$
 secs $5(3.5) = -16(3.5)^2 + 112(3.5) + 3 = 199$ feet

3456789

- 6. (13 pts) Study the graph of the *polynomial* function f given here.
- **6a.** Exactly how many x-intercepts does f have? 3
- **6b.** Exactly how many turning points does f have?
- 6c. What is the smallest degree that this function could have?

- **6f.** What is the absolute maximum of the function f?
- **6g.** What is/are the local minimum of the function f? (2.5, -4.5)
- **6h.** What is/are the local maximum of the function f?
- **6i.** What is the range of f? Write the answer in interval notation.
- 6j. Find the interval(s) where the function f is increasing. Write the answer in interval notation.

-9-8-7-6-5-4-3

7. (12 pts)

a. Write the expresion in terms of i.
$$\sqrt{-49} = 7i$$

 $\sqrt{-49} = \sqrt{-149} = \sqrt{-1} \cdot \sqrt{49} = i \cdot 7 = 7i$

- b. Perform the operation and write the answer in the a + bi form. 10i $\sqrt{-25 + 5i} = 5i + 5i$
- Perform the operation and write the answer in the a + bi form. 2i 11(-2-3i) - (9-5i) = -2-3i-9+5i
- d. Perform the operation and write the answer in the a + bi form. 9 /7i (2 i)(7 5i)

8. (5 pts) Write the number in the a + bi form. $\frac{1}{29} + \frac{2}{29}$

$$\frac{A}{(2-5i)}$$
, $\frac{2+5i}{(2+5i)}$ = $\frac{8+20i}{4-25i^2}$ = $\frac{8+20i}{4-25(-1)}$ = $\frac{8+20i}{29}$

- 9. (12 pts) To answer parts a-e consider the rational function $f(x) = \frac{2}{x-4}$
 - a. Find the y-intercept.

$$y = \frac{1}{2} = \frac{2}{0-4} = -\frac{1}{2}$$

y=-1/2

b. Find the x-intercept.

$$\frac{2}{\chi-4} = 0$$
 No salution

c. Find the domain of f.

d. True or False: The point (2, -1) is on the graph of f.

$$f(2) = \frac{2}{2-4} = \frac{2}{-2} = -1$$

e Sketch the graph and use a dashed line to indicate any vertical asymptotes..

