A NOTE ON DOMINATING SETS AND AVERAGE DISTANCE

ERMEINDA DELAVIÑA, RYAN PEPPER, AND BILL WALLER
UNIVERSITY OF HOUSTON – DOWNTOWN, HOUSTON, TX, 77002

ABSTRACT. We show that the total domination number of a simple connected graph is greater than the average distance of the graph minus one-half, and that this inequality is best possible. In addition, we show that the domination number of the graph is greater than two-thirds of the average distance minus one-third, and that this inequality is best possible. Although the latter inequality is a corollary to a result of P. Dankelmann, we present a short and direct proof.

1. Introduction and Key Definitions

Let $G = (V, E)$ be a simple connected graph of finite order $|V| = n$. Although we may identify a graph G with its set of vertices, in cases where we need to be explicit we write $V(G)$ to denote the vertex set of G. A set D of vertices of a graph G is called a dominating set provided each vertex of $V - D$ is adjacent to a member of D. The domination number of G, denoted $\gamma = \gamma(G)$, is the cardinality of a smallest dominating set in G. Likewise, a set D of vertices is called a total dominating set provided each vertex of V is adjacent to a member of D. The total domination number of G, denoted $\gamma_t = \gamma_t(G)$, is the cardinality of a smallest total dominating set in G. The distance between two vertices u and v in G is the length of a shortest path in G connecting u and v. The Wiener index or total distance of G, denoted by $W = W(G)$, is the sum of all distances between unordered pairs of distinct vertices of G [5]. The average distance of G, denoted by $\bar{D} = \bar{D}(G)$, is $2W/[n(n-1)]$. Put another way, this number gives, on average, the distance between a pair of vertices of G. Unless stated otherwise, when we refer to a subgraph of G, we mean an induced subgraph.

The total domination number of a graph was first introduced in [2]. This invariant remains of interest to researchers as evidenced by numerous recent papers. Various upper and lower bounds on γ_t have been discovered. The domination number has, of course, been well studied [8,9].

The average distance of a graph has sometimes been used to provide lower bounds for domination-related invariants, including the domination number itself [4]. One of the first results along these lines is the following theorem due to F. Chung in [1], which originated as a conjecture of the computer program Graffiti [6]. The independence number of G, denoted by $\alpha = \alpha(G)$, is the cardinality of a largest set of mutually non-adjacent vertices.

1991 Mathematics Subject Classification. 05C35.

Key words and phrases. average distance, domination number, total domination number, Wiener index.
Theorem 1 (Chung). Let G be a graph. Then
\[\alpha \geq \bar{D}, \]
with equality holding if and only if G is complete.

Recently, this theorem has been generalized by Hansen et al. as a result about the forest number $f = f(G)$ of a graph G [7]. This is the maximum order of an induced forest of G.

Theorem 2 (Hansen et al.). Let G be a graph. Then
\[f \geq 2\bar{D}. \]

This theorem was also motivated by a conjecture of Graffiti [10]. Its proof is based on techniques introduced by Dankelmann in [3]. Dankelmann uses similar techniques in [4] to characterize graphs with fixed order and domination number that have maximum average distance. One can derive the following theorem as a corollary of this characterization (although this is not stated in [4]).

Theorem 3. Let G be a graph. Then
\[\gamma > \frac{2}{3}\bar{D} - \frac{1}{3}. \]
Moreover, this inequality is best possible.

The proof of Dankelmann’s characterization result is lengthy and technical. We give a short direct proof of Theorem 3, as well as the following Theorem 4, which is the main result of our paper. We defer the proofs to a later section.

Theorem 4 (Main Theorem). Let G be a graph. Then
\[\gamma_t > \bar{D} - \frac{1}{2}. \]
Moreover, this inequality is best possible.

2. Other Definitions

Let $R(k,t,l)$ denote the binary star on $k + t + l$ vertices, where the maximal interior path has order t and there are k leaves on one side of the binary star and l leaves on the other. See Figure 1.

Now let $R(n,t)$ denote the binary star of order n where the maximal interior path has order t and the leaves are as balanced as possible on each side of the binary star.

A set D of vertices of a graph G is called a connected dominating set provided D is a dominating set that induces a connected subgraph of G. The connected
domination number of G, denoted $\gamma_c = \gamma_c(G)$, is the cardinality of a smallest connected dominating set in G. A trunk for a graph G is a sub-tree (not necessarily induced) that contains the vertices of a dominating set of G. Hence, every spanning tree of G is a trunk for G, and every connected dominating set is the vertex set of some trunk. Standard graph theoretical terms not defined in this paper can be found in [11], for instance.

3. Lemmas

The proof of Lemma 5 involves elementary algebra, counting, and limit arguments; we therefore omit it.

Lemma 5. For integers $k \geq 0$ and $t \geq 1$,

$$W(R(k, t, k)) = (t + 3)k^2 + (t + 2)(t - 1)k + \frac{t(t + 1)(t - 1)}{6},$$

and

$$W(R(k, t, k + 1)) = (t + 3)k^2 + (t + 1)^2k + \frac{t(t + 1)(t + 2)}{6}.$$ Moreover,

$$W(R(k, t, k)) < W(R(k, t, k + 1)) < W(R(k + 1, t, k + 1)),$$

and

$$\lim_{k \to \infty} \bar{D}(R(k, t, k)) = \frac{t + 3}{2}.$$ The following lemma is proven in [6, Theorem 2].

Lemma 6. Let G be a graph with a trunk of order $t \geq 1$. Then

$$\bar{D}(G) \leq \bar{D}(R(n, t)),$$

with equality holding if and only if $G = R(n, t)$.

The next lemma follows by combining the two previous lemmas.

Lemma 7. Let G be a graph with a trunk of order $t \geq 1$. Then

$$\bar{D}(G) < \frac{t + 3}{2}.$$ An immediate consequence of Lemmas 5 and 7 is the following corollary, which defines the relationship between the minimum order of a connected dominating set of a graph G, denoted $\gamma_c = \gamma_c(G)$, and its average distance.

Corollary 8. Let G be a graph. Then

$$\gamma_c > 2\bar{D} - 3.$$ Moreover, this inequality is best possible.

Proof. Let D be a minimum connected dominating set. Then any spanning tree of the subgraph induced by D is a trunk for G. Hence, by Lemma 7,

$$\bar{D}(G) \leq \frac{\gamma_c + 3}{2}.$$ To show this inequality is best possible, consider $R(j, t, j)$, where $t \geq 1$ and $j \geq 0$. It is easy to see that $\gamma_c(R(j, t, j)) = t$. But by Lemma 5,

$$\lim_{j \to \infty} \bar{D}(R(j, t, j)) = \frac{t + 3}{2} = \frac{\gamma_c + 3}{2}.$$
One final lemma is needed. The next simple lemma provides some relations that hold for the number of edges induced by dominating sets and their complements. Given a graph G with dominating set D, a vertex $v \notin D$ is over-dominated by D if it has two or more neighbors in D. The over-domination number of v with respect to D, denoted by $O_D(v)$, is one less than the number of neighbors v has in D.

Lemma 9. Let T be a tree with minimum dominating set D such that the number of components of D is k. Denote the number of edges with both endpoints in D by e_1, the number of edges with both endpoints in $H = T - D$ by e_2, and the number of edges with one endpoint in D and the other endpoint in H by e_3. Moreover, let j be the number of non-trivial components of H with at least two neighbors in D and let l_H be the number of components of H with exactly one neighbor in D (the leaves of H). Then

a) $e_1 = |D| - k$

b) $e_2 = k - 1 - \sum_{v \in H} O_D(v)$

c) $e_3 = n - |D| + \sum_{v \in H} O_D(v)$

d) $2j + l_H \leq e_3 = k + j + l_H - 1$

e) $n - l_H + 2 + \sum_{v \in H} O_D(v) \leq 2k + |D|$.

Proof. Part a) holds because D induces a forest with k trees. Part c) is true because every vertex in H has a neighbor in D, giving the $n - |D|$, and because the summation contributes the extra edges that have one endpoint D and one in H. Part b) follows immediately from parts a) and c), since $n - 1 = e_1 + e_2 + e_3$ for a tree.

The left hand side of d) comes from the fact that, when counting the edges between D and H, each of the l_H leaves in H contributes exactly one edge while each of the j non-trivial components of H contributes at least two edges. The right hand side of d) follows easily by viewing the components of D together with the components of H as the vertices of a new tree with e_3 edges and $k + j + l_H$ vertices.

From d) we deduce that there are at most $k - 1$ non-trivial components of H, that is, $j \leq k - 1$. Combining this with the right hand side of d) and part c), we arrive at inequality e). □

4. Theorem Proofs

Our strategy for proving Theorem 4 is as follows. Given a minimum total dominating set D of a graph G, we form a particular spanning tree T of G so that D is also a minimum total dominating set of T. Then we apply the lemmas from the previous section to obtain the desired result.

Theorem 4 (Main Theorem) Let G be a graph. Then

$$\gamma_t > D - \frac{1}{2}.$$

Moreover, this inequality is best possible.

Proof. Let D be a minimum total dominating set of G. Suppose that D has k components. We form a spanning tree T of G such that D is also a minimum total dominating set of T. If G is a tree, then put $T = G$ and we are done. Otherwise, let C be a cycle in G. We delete an edge from C as follows.
i) If \(C \) has two consecutive vertices \(x \) and \(y \) such that \(x \notin D \) and \(y \notin D \), then delete the edge between them. The set \(D \) is still total dominating set for the resulting graph.

ii) Suppose the first case does not apply. If \(C \) has two consecutive vertices \(x \) and \(y \) such that \(x \in D \) and \(y \notin D \), then delete the edge between them. Since the other neighbor of \(y \) on \(C \) is necessarily in \(D \) (or else the first case applies), the set \(D \) is still a total dominating set for the resulting graph.

iii) If neither of the first two cases apply, then all of the vertices of \(C \) are in \(D \). Delete any edge of \(D \) from \(C \) and found that the proof we found a spanning tree \(T \) of cardinality \(\gamma_t(T) \) of \(C \).

Repeating this process until all cycles are removed. Call the resulting spanning tree \(T \). Since \(D \) is a total dominating set of \(T \), \(\gamma_t(T) \leq |D| = \gamma_t(G) \). Since the total domination number of a graph is at most the total domination number of any of its spanning trees, \(\gamma_t(G) \leq \gamma_t(T) \). Thus, \(\gamma_t(T) = |D| \) and \(D \) is a minimum total dominating set of \(T \).

Now, let \(L_H \), of cardinality \(l_H \), denote the leaves of \(T \) that are in \(H = T - D \) (the leaves of \(T \) that are not in \(D \)). Observe that the sub-tree \(T - L_H \) contains the total dominating set \(D \) of \(G \) and is thereby a trunk for \(G \). From Lemma 7,

\[
2\bar{D} - 3 < |T - L_H| = n - l_H.
\]

Hence by Lemma 9 part e), and since \(2k \leq \gamma_t \),

\[
2\bar{D} - 3 < 2k + \gamma_t - 2 - \sum_{v \in H} O_D(v) \leq 2\gamma_t - 2 - \sum_{v \in \bar{H}} O_D(v) \leq 2\gamma_t - 2.
\]

Rearranging yields the desired inequality.

To show the inequality is best possible, consider \(R(j, t, j) \), where \(t \equiv 2 \pmod{4} \) and \(j \geq 0 \). It is easy to see that \(\gamma_t(R(j, t, j)) = \frac{t}{2} + 1 \). But by Lemma 5,

\[
\lim_{j \to \infty} \bar{D}(R(j, t, j)) = \frac{t}{2} + \frac{3}{2} = \gamma_t + \frac{1}{2}.
\]

The proof of the theorem provides a necessary condition for \(\gamma_t = [\bar{D} - \frac{1}{2}] \). In the proof we found a spanning tree \(T \) of a connected graph \(G \) such that a minimum total dominating set of \(G \) was also a total dominating set for \(T \). We let \(H = T - D \) and found that

\[
\gamma_t > \bar{D} - \frac{1}{2} + \frac{1}{2} \sum_{v \in \bar{H}} O_D(v).
\]

Now if \(\gamma_t = [\bar{D} - \frac{1}{2}] \), then

\[
[\bar{D} - \frac{1}{2}] = \gamma_t \geq [\bar{D} - \frac{1}{2} + \frac{1}{2} \sum_{v \in \bar{H}} O_D(v)],
\]

which immediately suggests that \(D \) may over-dominate at most one vertex of \(H \), and if there is an over-dominated vertex of \(H \), its over-domination number is 1.

To see that there exist graphs in which any spanning tree containing a minimum total dominating set of the graph (as a total dominating set for the spanning tree) over-dominates exactly one vertex (with over-domination number 1) of \(H \) and \(\gamma_t = [\bar{D} - \frac{1}{2}] \), consider \(R(j, t, j) \), where \(t > 1 \), \(t \equiv 1 \pmod{4} \) and \(j \geq t \). On the other
hand, that this condition is not sufficient for equality is seen in \(P_{4k+3}\) (the path on \(4k+3\) vertices) for \(k \geq 1\). Any minimum total dominating set \(D\) in \(P_{4k+3}\) over-dominates exactly one vertex \(v\) of \(V - D\), and \(v\) has over-domination number 1, but \(\gamma_t\) is about one half the number of vertices and \(\bar{D}\) is about one third of the number vertices.

Next we present a short and direct proof of Theorem 3. As mentioned previously, this result can be deduced from a result of Dankelmann in [4].

Theorem 3 Let \(G\) be a graph. Then

\[
\gamma > \frac{2}{3} \bar{D} - \frac{1}{3}
\]

Moreover, this inequality is best possible.

Proof. Let \(D\) be a minimum dominating set of \(G\). Suppose that \(D\) has \(k\) components. We will form a spanning tree \(T\) of \(G\) such that \(D\) is also a minimum dominating set of \(T\). If \(G\) is a tree, then put \(T = G\) and we are done. Otherwise, let \(C\) be a cycle in \(G\). We delete an edge from \(C\) as follows.

i) If \(C\) has two consecutive vertices \(x\) and \(y\) such that \(x \notin D\) and \(y \notin D\), then delete the edge between them. The set \(D\) still dominates the resulting graph.

ii) Suppose the first case does not apply. If \(C\) has two consecutive vertices \(x\) and \(y\) such that \(x \in D\) and \(y \notin D\), then delete the edge between them. Since the other neighbor of \(y\) on \(C\) is necessarily in \(D\) (or else the first case applies), the set \(D\) still dominates the resulting graph.

iii) If neither of the first two cases apply, then all of the vertices of \(C\) are in \(D\). Delete any edge of \(C\) and the set \(D\) still dominates the resulting graph.

Repeat this process until all cycles are removed. Call the resulting spanning tree \(T\). Since \(D\) is a dominating set of \(T\), \(\gamma(T) \leq |D| = \gamma(G)\). Since the domination number of a graph is at most the domination number of any of its spanning trees, \(\gamma(G) \leq \gamma(T)\). Thus, \(\gamma(T) = |D|\) and \(D\) is a minimum dominating set of \(T\).

Now, let \(L_H\), of cardinality \(l_H\), denote the leaves of \(T\) that are in \(H = T - D\) (the leaves of \(T\) that are not in \(D\)). Observe that the sub-tree \(T - L_H\) contains the dominating set \(D\) of \(G\) and is thereby a trunk for \(G\). From Lemma 7,

\[
2\bar{D} - 3 < |T - L_H| = n - l_H.
\]

Hence by Lemma 9 part e), and since \(2k \leq 2\gamma\),

\[
2\bar{D} - 3 < 2k + \gamma - 2 - \sum_{v \in H} O_D(v) \leq 3\gamma - 2 - \sum_{v \in H} O_D(v) \leq 3\gamma - 2.
\]

Rearranging yields the desired inequality.

To show the inequality is best possible, consider the family of stars \(S_n\). Since the average distance in stars can be made arbitrarily close to \(2\), \(\frac{2}{3} \bar{D}(S_n) - \frac{1}{3}\) can be made arbitrarily close to \(\gamma(S_n) = 1\).

As was the case for total domination number and average distance, one can deduce from the proof a similar necessary condition for equality in \(\gamma = \lfloor \frac{2}{3} \bar{D} - \frac{1}{3} \rfloor\).
References