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Abstract

The k-domination number γk(G) of a simple, undirected graph G
is the order of a smallest subset D of the vertices of G such that each
vertex of G is either in D or adjacent to at least k vertices in D. In
2010, the conjecture-generating computer program, Graffiti.pc, was
queried for upperbounds on the 2-domination number. In this paper
we prove new upper bounds on the 2-domination number of a graph,
some of which generalize to the k-domination number.
keywords: 2-domination number, k-domination number, indepen-
dence number, k-independence number, matching number, core size,
path covering number, matching number, neighborhoods.
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Definitions and introduction

Let G be a finite simple graph on vertex set V (G) and edge set E(G). A
subset D of the vertices of a graph G is a k-dominating set if every vertex
of the graph is either in D or adjacent to at least k vertices of D. The
k-domination number of a graph G is the order of a smallest k-dominating
set, which we denote by γk(G). A subset of the vertices is an independent
set if no two vertices in the subset are adjacent. The independence number
of graph G, denoted α(G), is the order of a largest independent set. The
intersection of all largest independent sets is called the independence-core of
the graph and its order the core size, which we denote by αc(G). A subset
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S of the vertices of G is k-independent if the subgraph induced by S has
maximum degree less than k. The k-independence number αk is the order
of a largest k-independent set. Observe that a 1-independent set is simply
an independent set, and that a 1-dominating set is simply a dominating
set.

These generalized concepts of independent and dominating sets to k-
independent and k-dominating sets, respectively, originated in a 1985 paper
[12] of Fink and Jacobson, in which they conjectured that the k-domination
number of graph was not more than the k-independence number. In the
same year the conjecture was proven by Favaron [13]. Since then many pa-
pers have appeared presenting bounds on the k-domination number, some-
times bounds on only the 2-domination number and in lesser numbers one
finds some papers presenting bounds on the k-independence number. In
this paper, we mention many of those results and address how they relate
to our results.

In 2010 Graffiti.pc was queried for upperbounds on the 2-domination
number of connected graphs. We refer the reader to [9] and [10] for a
description of the heuristic used in this query and for a comparison to Fa-
jtlowicz’s Graffiti program. Here we simply note that a product of a query
of Graffiti.pc, in general, is a list of conjectured noncomparable relations
(in this case upperbounds) for a chosen combination of invariants (in this
case simply, the 2-domination number). On the webpage Written on the
Wall II one finds almost 50 conjectures on the 2-domination number (see
[11] starting with number 382), many of which are settled in this paper and
some generalized to results on the k-domination number. In our closing
section, we present some open conjectures and some partial results.

Independence and k-domination

The following Theorem of Favaron (see [13]) was motivated by the conjec-
ture of Fink and Jacobson announced in [12].

Theorem 1. (Favaron) For any graph G and any positive integer k, every
k-independent set D for which k|D| − |E(G[D])| is a maximum is a k-
dominating set of G.

Corollary 2. (Favaron) For any graph G and any positive integer k,
γk(G) ≤ αk(G).

Next note that a recent application of Theorem 1 due to Blida, Chellali,
Favaron and Meddah in [2] yields interesting corollaries.

Theorem 3. (Blida et.al.) For any graph G and any positive integers j
and k with j ≤ k,

αk+1(G) ≤ αj(G) + αk−j+1(G).
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Corollary 4. (Blida et.al.) Let G be a graph. Then

γk+1(G) ≤ αk(G) + α(G).

Corollary 5. (Blida et.al.) Let G be a graph. Then

γk(G) ≤ kα(G).

Graffiti.pc’s 382e in [11] suggested a relation between the 2-domination
and independence numbers which now follows as a special case of the corol-
lary to our next theorem.

Theorem 6. For any graph G and any positive integers a and b,

γa+b(G) ≤ γa(G) + αb(G).

Proof. Let a and b be positive integers. Let D be a minimum a-dominating
set of G and let I be a b-independent set of G[V − I] such that I is also a
b-dominating set of G[V −I] as in Theorem 1. Then every vertex in neither
D nor I is adjacent to at least a vertices of D and also at least b vertices
from I. Hence D ∪ I is (a + b)-dominating and has order at most γa +
αb.

Corollary 7. Let G be a graph and let k be a positive integer. Then

γk+1(G) ≤ γk(G) + α(G).

Proof. Let a = k and b = 1. Then this follows immediately from Theorem
6 and γ1(G) = γ(G) ≤ α(G).

Take a = j and b = k − j + 1 to see that Corollary 4 also follows from
Theorem 6 and Corollary 2. Further note that iterating the relation in
Theorem 6 also yields Corollary 5.

Figure 1: γ2 = 5, 2α− αc = 5 and α2 = 6

One of the Graffiti.pc conjectures that we settled almost immediately
was that γ2(G) ≤ 2α(G) − αc(G), which suggests an improvement on the
bound of Corollary 5 for k = 2 and also provides an immediate sufficient
condition for γ2(G) ≤ α(G).(Note that various bounds on the core size have

3



been obtained see for instance Hammer et. al. [15], Levit and Mandrescu
[20], and Boros et al. [1].) Upon learning of Corollary 2 we naturally won-
dered if α2(G) ≤ 2α(G)−αc(G), however, the graph in Figure 1 shows that
this is not the case. Still, inspired by Favaron’s result on the existence of
a k-independent set that is also k-dominating as in Theorem 1, we realized
that our original proof of Graffiti.pc’s conjecture also suggested a set with
both properties (for k = 2) and thus this fact is presented separately.

Theorem 8. Let G be a graph with I a maximum independent set. Then
there is a 2-independent set that is 2-dominating and contains I.

Proof. Let I be a maximum independent set. Let D2 be the set vertices
of V − I that are adjacent to at least two vertices in I. Next, let J be a
maximal independent set in the subgraph induced by V − I −D2. To see
that I ∪ J is a 2-dominating set suppose that x ∈ V − (I ∪ J). If x is in
V − (I ∪ J)−D2, then x is adjacent to at least one vertex in J and to at
least 1 vertex in I. Thus I ∪J is 2-dominating set. Lastly, to see that I ∪J
is 2-independent, note that a vertex in J has at most one neighbor in I and
no two vertices in J are adjacent to a common vertex without contradicting
that I is maximum.

Theorem 9. Let G be a graph. Then

γ2(G) ≤ 2α(G)− αc(G).

Proof. Let I be a maximum independent set. Let D2 be a the vertices
of V − I that are adjacent to at least two vertices in I and Ic be the
independence core. Observe that if a vertex x ∈ V − I is adjacent to
a vertex w in Ic, then x must be adjacent to 2 vertices of I, otherwise
(I − {w}) ∪ {x} is maximum independent set and we contradict that w is
in the independence core Ic. Thus, N(Ic) ⊆ D2, and when we let J be a
maximal independent set in the subgraph induced by V − I −D2, we know
by the proof of Theorem 8 that I ∪ J is a 2-dominating. Moreover, since I
and J are disjoint, it is clear that |J | + |Ic| ≤ α(G). Now γ2 ≤ |I ∪ J | =
|I|+ |J | ≤ |I|+ (|I| − |Ic|) ≤ 2α(G)− αc(G).

The following immediate corollary to Theorem 9 was previously ob-
served by Blidia, Chellali and Volkmann in [4], where they also prove that
for a block graph G, γ2(G) ≥ α(G), thereby generalizing an earlier result
of Blidia, Chellali and Favaron in [3] for trees.

Corollary 10. Let G be a graph with a unique maximum independent set.
Then

γ2(G) ≤ α(G).
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Figure 2: n(G4) = 22, α(G4) = 9 and γ2(G4) = 9

To see that the relation in Theorem 9 is sharp let k ≥ 2, and begin with
three copies of C2k−1 and one K1. In each copy of C2k−1 join the endpoints
of one edge to the K1. Call the resulting graph, Gk, and observe that it has
1+3(2k−1) = 6k−2 vertices, α(Gk) = 3(k−1)+1 and γ2(Gk) = 3(k−1)+1.
This family of graphs also suggests additional graphs for which γ2 = α. See
G4 in Figure 2.

Early in our investigation of the 2-domination number of a graph, we
proved another relation between the 2-domination number and the inde-
pendence number of graph. Namely, we proved that γ2(G) ≤ (n+α(G))/2,
which we found interesting. We do not list it in this section but will have
occasion to mention it in the third section of this paper (see Corollary 25).
However, note that Graffiti.pc conjectured (number 388 in [11]) that in such
a bound one need only consider the independence number of the subgraph
induced by the vertices of degree at most two, which is stated below and
proven in [7].

Theorem 11. (DeLaVina, Pepper, Vaughan) Let G be a graph on n ≥ 3
vertices and S2 the set of vertices of degree at most 2. Then

γ2(G) ≤ n+ α(G[S2])
2

.

Inspired by two of Graffiti.pc’s conjectures (numbers 383a and 383b
in [11]) that also related the independence number to the 2-domination
number, we present a more general statement next.

Theorem 12. Let G be an n-vertex graph and Ak the set of vertices of
degree at least k. Then

γk(G) ≤ n− α(G[Ak]).
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Proof. Let Ik be a maximum independent set for G[Ak]. Then V − Ik is
k-dominating, since every vertex in Ik is adjacent to at least k vertices none
of which are in Ik.

A result of Blidia, Chellali and Volkmann in [5] is a corollary to Theorem
12.

Corollary 13. (Blidia, Chellali and Volkmann) Let G be an n-vertex bi-
partite graph and let d(v) denote the degree of a vertex v of G. Then

γk(G) ≤ n+ |{x ∈ V : d(x) ≤ k − 1}|
2

.

Proof. Let Ak be the set of vertices of degree at least k. Then {x ∈ V :
d(x) ≤ k − 1|} = V − Ak. Since α(G[Ak]) ≥ |Ak|

2 for bipartite graphs,
Theorem 12 yields

γk(T ) ≤ n− α(G[Ak]) ≤ n− |Ak|
2

=
n+ |V −Ak|

2
.

A special case (when k = 2) of our next corollary that follows immedi-
ately from Theorem 12 was observed by Blidia, Chellali and Volkmann in
[4].

Corollary 14. Let G be an n-vertex graph with minimum degree δ(G). If
δ(G) ≥ k, then

γk(G) ≤ n− α(G).

Figure 3: n = 18, α(G[A2]) = 7 and γ2 = 11

To see that for k = 2 the bound in Theorem 12 is sharp for infinitely
many graphs, let m ≥ 2, begin with a K2,m and label the two vertices
of degree m as a and b. Then join a to 3 discrete vertices and join b to
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the two centers of a path on 10 vertices. This graph has n = m + 15,
α(G[A2]) = m+ 4 and γ2 = 11 (see Figure 3 for an example.)

Our last corollary to Theorem 12 has been observed in several papers;
we note it again since we will have occasion to use it.

Corollary 15. Let T be an n-vertex tree with L leaves. Then

γ2(T ) ≤ n+ L

2
.

Proof. The number of vertices of degree at least 2 in T is n − L, and
α(G[A2]), the independence number of the subgraph induced by the non-
leaves, is at least n−L

2 . Thus, γ2(T ) ≤ n−α(G[A2]) ≤ n− n−L
2 = n+L

2 .

A cut vertex of a graph is a vertex whose removal from the graph in-
creases the number of components of the graph. The number of cut vertices
of G is denoted by κ(G). Graffiti.pc’s number 384a involving the number
of cut vertices follows from a straightforward spanning tree argument and
the previous corollary.

Proposition 16. Let G be a connected n-vertex graph. Then

γ2(G) ≤ n− κ(G)
2

.

Proof. Let T be a spanning tree of G with L leaves. Since γ2(G) ≤ γ2(T )
and κ(G) ≤ κ(T ), γ2(G) ≤ γ2(T ) ≤ (n + L)/2 = n − κ(T )/2 ≤ n −
κ(G)/2.

Figure 4: n = 8m, κ = 6m and γ2 = 5m

The graphs in Figure 4 demonstrate that the relation in Proposition 16
is sharp for infinitely many graphs.
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Path Covering and 2-domination

A collection of vertex disjoint paths of a graph that partition the vertices
of G is a path covering of G. The path covering number of a graph G is
the cardinality of a minimum path covering of the graph and is denoted by
ρ(G). Note that ρ(G) = 1 if and only if G has a Hamiltonian path.

Our next theorem originated as Graffiti.pc’s number 390 in [11]. Note
that in 2007 the program also conjectured that the total domination number
(the order of a smallest subset of the vertices such that every vertex of the
graph is adjacent to a vertex in the subset) is bounded above by the sum
of path covering number and the matching number (see [8]). Although the
total domination number and 2-domination numbers, in general, are not
comparable, Haynes et.al in [16] show that for nontrivial trees γt ≤ γ2 and
in [6] Chellali extended this to γt − c(G) ≤ γ2 for a cactus graph G with
c(G) even cycles.

Theorem 17. Let G be a connected graph. Then

γ2(G) ≤ ρ(G) + µ(G).

Proof. Let ρ = ρ(G) and let P = {P1, P2, ..., Pρ} be a minimum path
covering of G with Pi having ni vertices. Starting from one end, let Mi

be the matching consisting of the edges in odd position along Pi, so that
|Mi| = bni

2 c. For each i such that 1 ≤ i ≤ ρ, we construct a 2-dominating
set Di for Pi such that |Di| ≤ |Mi| + 1 as follows. For i such that ni = 0,
simply let Di be the single vertex of Pi and observe that since |Mi| = 0,
|Di| = |Mi| + 1. For i such that ni > 1, to form Di we take every other
vertex along Pi starting from one end and the vertex at the other end of Pi.
If ni is odd, this works very simply, since |Di| = ni+1

2 = ni−1
2 +1 = |Mi|+1.

If ni is even, then |Di| = ni

2 + 1 = |Mi|+ 1. This completes the proof, since⋃ρ
i=1Di is a 2-dominating set of order at most ρ+ |

⋃ρ
i=1Mi| which at most

ρ+ µ(G).

To see that the bound in Theorem 17 is sharp for infinitely many graphs,
start with a cycle on m ≥ 3 vertices. Then join each vertex of the cycle to
a pair of discrete vertices, so that the resulting graph has 3m vertices; it is
not difficult to see that ρ = m, µ = m and γ2 = 2m.

Corollary 18. Let G be a bipartite graph. Then

γ2(G) ≤ ρ(G) + α(G).

Proof. This follows immediately from Theorem 17, since µ(G) ≤ α(G) for
bipartite graphs.
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Lemma 19. Let G be an n-vertex bipartite graph, let I be a maximum
independent set of vertices in G,and Ic = V (G) − I. Then there exists a
matching, each of whose edges has one endpoint in I and one endpoint in
Ic, such that each vertex of Ic is incident to an edge in the matching.

Proof. Since for bipartite graphs, µ(G) = n−α(G), and there are n−α(G)
vertices in Ic, each vertex of Ic must be saturated by every maximum
matching since there are no edges joining vertices of I. Moreover, each
edge of a maximum matching must be incident to exactly one vertex in
I.

Theorem 20. Let G be a bipartite graph on n ≥ 3 vertices. Then

γ2(G) ≤ 2α(G)− ρ(G).

Proof. Let I be a maximum independent set of vertices in G containing the
leaves of G, and let Ic = V (G)− I. By the lemma, there exists a matching,
each of whose edges has one endpoint in I and one endpoint in Ic, such that
each vertex of Ic is incident to an edge in the matching. Color the edges
of this matching red. Likewise, consider a maximum matching M in the
subgraph induced by Ic, and color the edges of this matching green. Now
form a path covering R of G as follows: if a vertex v of I is not incident
to a red edge, then add v to R as a singleton path. If two red edges are
adjacent to the same green edge, then add these edges to R as a four-path
(note that these edge cannot form a triangle). Finally, add the remaining
red edges to R as two-paths. It is easy to see every vertex of G is contained
in exactly one path in R.

Next we will color some of the vertices of G as follows: For each green
edge, if an endpoint v of the edge is adjacent to a vertex in Ic not incident
to a green edge, then color v white, and color its neighbor in I incident
to the red edge containing v yellow. If neither endpoint of the green edge
is adjacent to a vertex in Ic not incident to a green edge, then arbitrar-
ily choose one endpoint v and color the vertex white, and again color its
neighbor in I incident to the red edge containing v yellow. The remaining
vertices of I will be colored blue. We will label the set of white vertices
W , the set of yellow vertices Y , and the set of blue vertices B. Note that
|W | = |Y |.
Claim 1. Each four-path in R contains at most one white vertex and at
least one blue vertex.

Proof of Claim 1. By way of contradiction, suppose there exists a four-
path P in R that contains two white vertices, say a and b, which thus must
be joined by a green edge. Therefore a must be adjacent to a vertex a′ 6= b
of Ic and b must be adjacent to a vertex b′ 6= a of Ic neither of which is
incident to a green edge. Since G is bipartite, a′ 6= b′. Moreover, if a′ and
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b′ are adjacent, then M is not maximum, a contradiction. But then we can
find a larger matching in the subgraph induced by Icthan M , by deleting
the edge joining a and b from M and in turn adding the edges joining a
and a′ and b and b′, again a contradiction. Now it is easy to see that P
must contain a blue vertex as well.
Claim 2. X = I ∪W is a 2-dominating set of G.

Proof of Claim 2. Since X contains I, then the only vertices of G that
may not be 2-dominated by X are those vertices of Ic that are adjacent to
exactly one vertex in I. Suppose v is such a vertex. If v is incident to a
green edge, then either v ∈W or v is adjacent to a white vertex. In either
case, v is 2-dominated. On the other hand, suppose v is not incident to a
green edge. Since v is not a leaf, then v must be adjacent to another vertex
a of Ic. If a is incident to a green edge, then a must be colored white and
hence v is 2- dominated. If a is not incident to a green edge, then M is not
maximum, a contradiction.

Finally, observe by Claim 1 that each path in R must contain at least
one blue vertex, hence |B| ≥ |R| ≥ ρ(G). Therefore, by Claim 2,

γ2(G) ≤ |X| = |I ∪W | = α(G) + |W | = α(G) + |Y | = α(G) + |I −B|
= α(G) + α(G)− |B| ≤ 2α(G)− ρ(G)

Neighborhoods and k-domination

Let X be a subset of the vertices of G. The neighborhood of X, denoted
N(X), is the set of all vertices adjacent to some vertex in X. The subgraph
induced by X is denoted G[X].

Inspired by several of Graffiti.pc’s conjectures we prove that any subset
of the vertices is the starting point for a 2-dominating set from which several
of Graffiti.pc’s conjectures and other known bounds follow as corollaries.

Theorem 21. Let G be an n-vertex graph, S ⊆ V and G[N(S) − S] the
subgraph of G induced by N(S)− S. Then

γ2(G) ≤ n− |N(S)− S|+ γ(G[N(S)− S]).

Proof. Let D be a smallest dominating set for G[N(S)− S]. Observe that
D and S are disjoint, and that S ⊆ V − (N(S) − S). To see that (V −
(N(S)−S))∪D is a 2-dominating set for G, let v be a vertex in N(S)−S.
Clearly we can assume that v is not also in D. Now, since v is adjacent
to at least one vertex in D and to at least one vertex in S, it follows that
(V − (N(S)− S)) ∪D is a 2-dominating set.
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Figure 5: n = 11, γ2 = 4 and for S the set of white vertices, ∆(G[N(S)−
S)] = 7.

The next corollary was inspired by three of Graffiti.pc’s conjectures
(385a, b and c in [11]). The graph in Figure 5 demonstrates that the
bound in Corollary 22 is sometimes sharp.

Corollary 22. Let G be an n-vertex graph and S ⊂ V and G[N(S) − S]
the subgraph of G induced by N(S)− S. Then

γ2(G) ≤ n−∆(G[N(S)− S]).

Proof. By Theorem 21 and the well-known Berge inequality γ(G[N(S) −
S]) ≤ |N(S)− S| −∆(G[N(S)− S] one immediately sees that

γ2(G) ≤ n− |N(S)− S|+ γ(G[N(S)− S])
≤ n− |N(S)− S|+ |N(S)− S| −∆(G[N(S)− S]
≤ n−∆(G[N(S)− S])

Our next theorem has interesting corollaries.

Theorem 23. Let G be an n-vertex graph, P the set of pendant vertices,
S ⊆ V such that P ⊆ S and G∗ the subgraph induced by the non-trivial
components of G[N(S)− S]. Then

γ2(G) ≤ n− |N(S)− S|+ γ(G∗).

Proof. Let D be a smallest dominating set for G∗. Observe that D and S
are disjoint. To see that (V − (N(S)−S))∪D is a 2-dominating set for G,
let v be a vertex in N(S)− S. Clearly we can assume that v is not also in
D. If v is not an isolate of G[N(S)− S], then v is adjacent to at least one
vertex in D and to at least one vertex in S. On the other hand, observe
that by construction, v is not an isolated vertex of G. Thus, if v is isolated
in G[N(S) − S], then since the pendant vertices are in S, v must have at
least two neighbors in V − (N(S)− S).
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Corollary 24. Let G be an n-vertex graph and D a dominating set that
contains all pendants. Then

γ2(G) ≤ n+ |D|
2

.

Proof. Since D is dominating, N(D)−D = V −D. It is well known that the
domination number of a graph with no isolated vertices is at most half the
number of vertices, and so a minimum dominating set of G∗, the subgraph
induced by the non-isolates of G[V − D], has order at most (n − |D|)/2.
Thus, by Theorem 23 we see that γ2(G) ≤ n − |N(D) − D| + γ(G∗) =
n− (n− |D|) + γ(G∗) ≤ |D|+ (n− |D|)/2 = (n+ |D|)/2.

Corollary 25. Let G be a graph on n ≥ 3 vertices. Then

γ2(G) ≤ n+ α(G)
2

.

Proof. Let D be a maximum independent set that contains all pendants.
Then γ2(G) ≤ n+α(G)

2 follows immediately from Corollary 24.

Next we note that the simple upperbound on γ2 for bipartite graphs
of Fujisawa et. al in [14] (generalizing a result found in [3]) also follows
easily as our next corollary. Note that in [14] they characterized the case
of equality.

Corollary 26. (Fujisawa et.al.) Let G be a bipartite graph on n ≥ 3
vertices. Then

γ2(G) ≤ 3
2
α(G).

Proof. This bound follows immediately from Corollary 25, since for bipar-
tite graphs n

2 ≤ α(G).

Corollary 27. Let G be an n-vertex graph and P the set of pendants. Then

γ2(G) ≤ n+ γ(G) + |P |
2

.

Proof. Let D be a minimum dominating set union the set of all pendants.
Then γ2(G) ≤ n+γ(G)+|P |

2 follows immediately from Corollary 24.

Corollary 28. (Blidia, Chellali, Volkmann) Let G be an n-vertex graph
with minimum degree δ(G) at least 2. Then

γ2(G) ≤ n+ γ(G)
2

.
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Proof. Since δ(G) ≥ 2, the set of pendants P is empty, and γ2(G) ≤ n+γ(G)
2

follows immediately from Corollary 27.

In general, the domination number and the matching number of a graph
are noncomparable, however it is well known that for graphs with no iso-
lated vertices (see [17]) the domination number is at most the matching
number. Theorem 23 and the previous observation settle Graffiti.pc’s num-
ber 397b.

Corollary 29. Let G be a connected n-vertex graph such that n ≥ 3 and
P the set of pendant vertices. Then

γ2(G) ≤ n− |N(P )|+ µ(G[N(P )]).

Proof. Since n ≥ 3 and G is connected, no two pendants are adjacent and so
N(P )−P = N(P ). Thus for G∗ the subgraph induced by the non-isolated
vertices of G[N(P )− P ], µ(G∗) = µ(G[N(P )]). Now Theorem 23 (with P
as our set) and γ(G∗) ≤ µ(G∗) yield γ2(G) ≤ n − |N(P ) − P | + γ(G∗) =
n−|N(P )|+γ(G∗) ≤ n−|N(P )|+µ(G∗) = n−|N(P )|+µ(G[N(P )]).

Let S be a subset of the vertices of a graph G. A vertex in V − S with
exactly one neighbor in S is called a private external neighbor of S. The
number of all external private neighbors of S is denote by pn(S).

Proposition 30. Let G be a graph and S ⊆ V . Then

γ2(G) ≤ n− |N(S)− S|+ pn(V − (N(S)− S)).

Proof. Let P ′ be the set of private external neighbors of V − (N(S)− S).
Since S ⊆ V − (N(S)− S) and every vertex that is not in V − (N(S)− S)
has at least one neighbor in S, P ′ ∪ [V − (N(S)−S)] is a 2-dominating set
and the result follows.

Our next immediate corollary settles Graffiti.pc’s conjecture 397a in
[11].

Corollary 31. Let G be an n-vertex connected graph such that n ≥ 3 and
P the set of pendant vertices. Then

γ2(G) ≤ |V −N(P )|+ pn(V −N(P )).

Proof. Let S be P and observe that N(P )− P is simply N(P ). Then this
follows from Proposition 30.
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Figure 6: n = 10, |N2| = 4 and γ2 = 6.

Our final result of this section settles Graffiti.pc’s 386a which states that
the 2-domination number of a graph is not more than the order of the (set)
complement of a largest intersection of neighborhoods of any two vertices.
We make the obvious generalization of this bound to k-domination number
in the next proposition and note that the graph in Figure 6 demonstrates
that the relation is sometimes sharp when k = 2.

Proposition 32. Let G = (V,E) be an n-vertex graph and Nk the largest
intersection of neighborhoods of any k vertices of G. Then

γk(G) ≤ n− |Nk|.

Proof. If |Nk| = 0, then the result follows trivially. So suppose that |Nk| ≥
1. Then V −Nk is a k-dominating set, since every u ∈ Nk is adjacent to k
vertices in V −Nk. Thus γk ≤ n− |Nk|.

Berge’s well known upper bound for the domination number of a graph
is a special case of Proposition 32.

Corollary 33. Let G = (V,E) be an n-vertex graph. Then γ(G) ≤ n −
∆(G).

Conjectures and Partial Results

Recall that the statistical median of a sequence is the middle number when
the sequence is ordered and the number of values is odd, and it is the
average of the two middle numbers when the number of values is even. Let
the degree sequence be ordered in nondecreasing order d1 ≤ d2 ≤ ... ≤
dn−1 ≤ dn. The upper median of the degree sequence, denoted by m(G), is
defined as the (statistical) median in case the number of vertices is odd and
the set m(G) equal to dn/2+1 in case the number of vertices is even. Since
stars demonstrate than the Berge-like relation involving γ2, n and ∆ does
not hold, the following conjecture of Graffiti.pc that γ2 ≤ n − (m(G) − 1)
seemed of interest.

Conjecture 1. Let G be a connected n-vertex graph. Then

γ2(G) > n−m(G) + 1,

where m(G) is the upper median of the degree sequence of G.
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The conjecture remains open in general, but next we prove the slightly
stronger relation whenever α2(G) > n/2, which is used to partially settle
Conjecture 1 (in particular for bipartite graphs).

Theorem 34. Let G be an n-vertex graph such that α2(G) > n/2. Then
α2(G) ≤ n − m(G) + 1, where m(G) is the upper median of the degree
sequence of G.

Proof. Let I be a largest 2-independent set with more than n/2 vertices.
Then, since each vertex of I has degree at most n− |I|+ 1 and more than
half the vertices are in I, the upper median degree is at most n − |I| + 1.
Hence, |I| ≤ n−m(G) + 1.

Corollary 35. If G is bipartite, then α2 ≤ n −m(G) + 1, where m(G) is
the upper median of the degree sequence of G.

Proof. If α2(G) > n/2, the result follows directly from Theorem 34. So, as-
sume that α2(G) = n/2. In this case, α2(G) = α(G) = n/2. Consequently,
both parts of the bipartite graph are maximum independent sets. Whence
the maximum degree is at most n/2, from which it follows that n/2 is at
most n minus the maximum degree. Therefore, α2(G) is at most n minus
the maximum degree, from which the result follows.

Conjecture 2. Let G be a connected graph. Then

γ2(G) ≤ A(G) + 1,

where A(G) is the largest integer k such that there exist k vertices whose
degree sum is not more than the number of edges of G.

Note that the graph invariant A(G) present in Conjecture 2 was intro-
duced in [21], and called the annihilation number of a graph. In [21] and
[22] Pepper proved that the annihilation number is an upperbound on the
independence number of a graph (which we use in the proof of our next
proposition), and in [19] the case of equality for the upperbound was char-
acterized by Larson. Note that it is easily seen that A(G) ≥ (n− 1)/2 and
thus when γ2 ≤ n/2 + 1 the relation in Conjecture 2 follows giving us a
partial result for the conjecture. Next we observe two other partial results
for Conjecture 2.

Proposition 36. If graph G has a unique maximum independent set, then

γ2(G) ≤ A(G),

where A(G) is the largest integer k such that there exist k vertices whose
degree sum is not more than the number of edges of G.
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Proof. By Corollary 10 and the above mentioned upperbound on α(G)
found in [21], we see that γ2(G) ≤ α(G) ≤ A(G).

Proposition 37. Let G be a graph on n ≥ 3 vertices. Then

γ2(G) ≤ 3
2
A(G) +

1
2
,

where A(G) is the largest integer k such that there exist k vertices whose
degree sum is not more than the number of edges of G.

Proof. By Corollary 25, (n − 1)/2 ≤ A(G) and the above mentioned up-
perbound found in [21], we see that γ2(G) ≤ n+α(G)

2 = n−1
2 + α(G)

2 + 1
2 ≤

A(G) + A(G)
2 + 1

2 = 3
2A(G) + 1

2 .

The total domination number of a graph G, denoted γt(G), is the order
of a smallest subset of the vertices such that every vertex of the graph is
adjacent to a vertex in the subset. Again we note that in 2007 the pro-
gram conjectured the similar upperbound for the total domination number
involving the annihilation number (see number 298 in [11]), which as far as
we know remains open.

Conjecture 3. Let G be a connected graph. Then

γt(G) ≤ A(G) + 1,

where A(G) is the largest integer k such that there exist k vertices whose
degree sum is not more than the number of edges of G.

Conjecture 4. Let G be an n-vertex connected graph. Then

γ2(G) ≤WP (G) + 1,

where WP (G) is the largest integer k such that dk(G) + k ≤ n.

Note that WP (G) is called the Welsh-Powell invariant (see [24]) of the
complement of G.
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