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Abstract

The independent-domination number of a graph is the cardinal-

ity of a smallest set of mutually non-adjacent vertices which has

the property that every vertex not in the set is adjacent to at least

one that is. We present several conjectures made by the computer

program Graffiti.pc about the independent-domination number of

graphs, providing proofs and partial results for some of these conjec-

tures.
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degree vertices, large degree vertices, Graffiti.pc.

1 Definitions and Introduction

Given a finite simple graph G = (V, E), an independent set is a subset of

V such that no pair of vertices in the subset are adjacent. A dominating

set is a subset of V such that every vertex not in the subset is adjacent

to at least one vertex that is. The independence number, α = α(G), is

the cardinality of a largest independent set. The domination number, γ =
∗Work supported in part by the United States Department of Defense and resources

of the Extreme Scale Systems Center at Oak Ridge National Laboratory.
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γ(G), is the cardinality of a smallest dominating set. The independent-

domination number, i = i(G), is the cardinality of a smallest independent

and dominating set. For S ⊆ V , the subgraph induced by S is denoted [S].

For graph theory terms and definitions not explicitly described or defined

below, the reader is referred to any basic graph theory text.

The Graffiti.pc conjecture-making program was written by E. DeLaViña

and inspired by a related program called Graffiti which was written by S.

Fajtlowicz. Some details of these programs can be found in [1] and [2], and

here we simply note that the programs’ conjectures take the form of upper

and lower bounds for a user selected graph invariant over a user selected

graph property.

In recent years, the Graffiti.pc program has been queried for bounds

on invariants related to certain kinds of dominating subsets for connected

graphs. From 2007 through 2009, we settled many Graffiti.pc conjectures

about total domination number and some of these results can be found

in [3], [4] and [5]. In 2010, we worked primarily on conjectures about 2-

domination number, and some of these results can be found in [6], [7] and [8].

In late 2010, Graffiti.pc was queried for conjectures about the independent-

domination number for connected graphs. In the paper at hand we present

some results on those conjectures. For the full list of Graffiti.pc conjectures

and their current status see [9].

2 Main Results

Two of the program’s conjectures (numbered 419a and 419b in [9]) inspired

and now follow from the following simple theorem. It gives a slight im-

provement on the inequality, i(G) ≤ α(G), whenever there is a vertex in

every maximum independent set of the graph G.

Theorem 2.1. If the intersection of all maximum independent sets of a

connected graph G is non-empty, then

i(G) ≤ α(G) − 1 < α(G).

Proof. Let G be a connected graph and suppose the intersection of all
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maximum independent sets of G is non-empty. Let v be a vertex in every

maximum independent set and let I be a maximum independent set. De-

note by N the neighbors of v. Let J be an independent-dominating set of

[N ] and let K be the set of vertices of I − {v} which have neighbors in J .

Now, starting with the set I −{v}+J −K, use a greedy algorithm to form

an independent-dominating set of G, and call this set I∗. Observe that

I∗ is not a maximum independent set since it does not contain v. Hence,

|I∗| < |I| and consequently, i(G) < α(G), proving the theorem.

Remark 2.2. The proof above actually establishes something stronger than

the statement of the theorem. Namely, it shows that, for any vertex in every

maximum independent set, there exists an independent-dominating set that

does not contain that vertex. The theorem above is then a corollary to this

statement.

The following two conjectures of Graffiti.pc, Conjecture 2.3 and Conjec-

ture 2.7 (but numbered 422a and 422c in [9]), remain open in general. We

provide some partial results and discussion after stating each conjecture.

The similarity between them perhaps explains why our partial results also

have much in common.

Conjecture 2.3. Let G be a graph and let M be the set of vertices with

maximum degree. Then,

i(G) ≤ α([V − M ]) +
2
3
m([M ]),

where [V − M ] denotes the subgraph induced by the vertices without max-

imum degree and m([M ]) denotes the number of edges in the subgraph in-

duced by M .

As a starting point, it seemed natural to focused on the special case

when M is independent. In this case, the statement simplifies as follows.

Conjecture 2.4. Let G be a graph and let M be the set of vertices with

maximum degree. If M is an independent set, then

i(G) ≤ α([V − M ]),
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where [V − M ] denotes the subgraph induced by the vertices without maxi-

mum degree.

Our next result is a special case of 2.4.

Theorem 2.5. Let G be a graph and let M be the set of vertices with

maximum degree. If M is an independent set and |M | ≤ 3, then

i(G) ≤ α([V − M ]),

where [V − M ] denotes the subgraph induced by the vertices without maxi-

mum degree.

Proof. Suppose that there is a unique vertex of maximum degree. In this

case, construct a maximal independent set in [V − M ] which contains a

neighbor of the unique maximum degree vertex (using a greedy algorithm).

This set will be independent-dominating in G and have order at most α([V −
M ]).

Suppose next that there are exactly two vertices of maximum degree.

Let a and b be the two maximum degree vertices. Denote the neighborhoods

of a and b by A and B respectively (note that under our hypothesis of

M being independent, none of the vertices in A ∪ B are themselves of

maximum degree). Now, if there is a vertex x ∈ A∩B, then build a maximal

independent set of [V − M ] containing x (using a greedy algorithm). This

set will be an independent-dominating set of G and have order at most

α([V − M ]). Thus, we may assume A ∩ B = ∅. Let x ∈ A. Since x has

at most ∆ − 2 neighbors in [V − M ] and |B| = ∆, there is a vertex y ∈ B

which is not adjacent to x. Build a maximal independent set of [V − M ]

which contains both x and y (using a greedy algorithm). This set will be

an independent-dominating set of G and have order at most α([V − M ]).

Finally, suppose that |M | = 3. Let a, b, and c be the three maximum

degree vertices with neighborhoods A, B, and C respectively (note that

under our hypothesis of M being independent, none of the vertices in A ∪
B ∪ C are themselves of maximum degree). If there is a vertex in the

intersection of all three of these neighborhoods, or if any pair of these

neighborhoods intersect but miss the third, then the proof follows along
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the same lines as the previous two cases. Thus, we may assume that these

sets are pairwise disjoint.

Let x ∈ A ∪ B ∪ C be a vertex which has the most neighbors in one of

the other sets. Without loss of generality, we may assume x ∈ A and B is

the set which realizes this maximum number of external neighbors. Denote

by A(z), B(z), and C(z) the sets of neighbors a vertex z has in sets A, B,

and C respectively. Since x can have at most ∆−2 neighbors in A∪B∪C,

there is a vertex y ∈ B which is not adjacent to x. It now remains to show

there is a vertex w ∈ C which is adjacent to neither x nor y. To that end,

observe the following inequalities;

|C(x)| ≤ ∆ − 2 − |B(x)|

|C(y)| ≤ |B(x)|.

The second of these is true by the way we selected x. Together, they yield

the inequality,

|C(x)|+ |C(y)| ≤ ∆ − 2 < ∆ = |C|.

This shows that there is a vertex w ∈ C adjacent to neither x nor y. Now,

build a maximal independent set of [V − M ] which contains x, y, and w

(using a greedy algorithm). This set will be an independent-dominating set

of G and have order at most α([V − M ]). This completes the proof.

Remark 2.6. Theorem 2.5 is actually true when M is not independent

as well, but the details seemed to be too much of a distraction. The proof

technique we used fails when |M | ≥ 4, though, in spite of that, we have

found no counter-example to Conjecture 2.3.

Conjecture 2.7. Let G be a graph of order n and let L be the set of vertices

with degree more than n
2 . Then,

i(G) ≤ α([V − L]) +
2
3
∆([L]),

where [V − L] denotes the subgraph induced by the vertices with degree at

most n
2 and ∆([L]) denotes the maximum degree of the subgraph induced by

L.
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Again, it seemed natural to focused on the special case when L is an

independent set. In this case, the statement simplifies as follows.

Conjecture 2.8. Let G be a graph of order n and let L be the set of vertices

with degree more than n
2 . If L is an independent set, then

i(G) ≤ α([V − L]),

where [V − L] denotes the subgraph induced by the vertices with degree at

most n
2
.

Before proceeding, observe that if L is empty, the bound follows trivially,

since α([V − L]) = α(G) ≥ i(G).

Lemma 2.9. Let G be a graph of order n and let L, as defined in Conjecture

2.7, be a non-empty independent set. If there is a vertex v adjacent to all

vertices of L or all but one vertex of L, then

i(G) ≤ α([V − L]).

Proof. Suppose v is adjacent to all vertices of L. Use any greedy algorithm

to build a maximal independent set of [V − L] containing v. This set will

be an independent-dominating set of G and have order at most α([V −L]),

which completes the proof.

Suppose v is adjacent to all but one vertex of L. Suppose x ∈ L is not

adjacent to v. Since the degree of x is more than n
2 and v could not be in L

by our hypothesis, there is at least one vertex w adjacent to x which is not

adjacent to v. Use any greedy algorithm to build a maximal independent

set of [V − L] containing both v and w. This set will be an independent-

dominating set of G and have order at most α([V − L]), which completes

the proof.

Theorem 2.10. Let G be a graph of order n and let L be the set of vertices

with degree more than n
2 . If L is an independent set and |L| = k ≤ 4, then

i(G) ≤ α([V − L]),

where [V − L] denotes the subgraph induced by the vertices with degree at

most n
2 .
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Proof. In light of Lemma 2.9, we may assume that each of the n−k vertices

in V − L is adjacent to at most k − 2 vertices of L. However, since each of

the k vertices of L is adjacent to more than n
2 vertices of V −L, we get the

following lower and upper bounds on the number of edges between L and

V − L, denoted below as m′:

kn

2
< m′ ≤ (n − k)(k − 2). (1)

It turns out that this inequality can only be true when k > 4. Consequently,

Conjecture 2.7 is true when k ≤ 4 because Lemma 2.9 will apply.

Corollary 2.11. Let G be a graph of order n and let L, as described in

Conjecture 2.7, be an independent set. If k = |L| > 4, then Conjecture 2.7

is true whenever,

n ≤ 2k2 − 4k

k − 4
. (2)

Proof. When k > 4, Inequality 1, in the proof of the above theorem, can

be solved for n to get the values for which Lemma 2.9 does not apply. For

all smaller values of n – those prescribed by Inequality 2 in the statement

of this corollary – the result follows from Lemma 2.9.

Remark 2.12. Theorem 2.10 is actually true when L is not independent

as well, but the details seemed to be too much of a distraction. The proof

technique we used fails when |L| ≥ 5, though, in spite of that, we have found

no counter-example to Conjecture 2.7.

3 Other Conjectures

For this query on independent-domination, Graffiti.pc reported a few dozen

conjectures. To date several have been refuted. In addition to Conjectures

2.3 and 2.7, which remain open, we present the following open conjectures.

Conjecture 3.1. Let G be a graph of order n and let M be the set of

vertices of maximum degree. Then

i(G) ≤ n − γ([N (M )]),
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where [N (M )] denotes the subgraph induced by neighbors of the maximum

degree vertices.

The degeneracy of a graph G, denoted d(G), is the maximum of min-

imum degrees of all induced subgraphs of G. The center of a graph G,

denoted by C, is the set of all vertices of minimum eccentricity of G. The

distance from a vertex v to a set of vertices is the smallest distance from

v to any of the vertices in the set. The eccentricity of the center, denoted

by ecc(C), is the maximum distance from the center to vertices not in the

center. Note that if the center is a single vertex, then the eccentricity of

the center is equal to what is commonly called the radius of the graph.

Conjecture 3.2. Let G be a connected graph and let C be the center of G.

Then

i(G) ≤ d(Gc) − ecc(C) + 2,

where Gc is the complement graph of G.
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