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Abstract. Graffiti.pc is a new conjecture-making program, whose design was
influenced by the well-known conjecture making program, Graffiti. This paper
addresses the motivation for developing the new program and a description,
which includes a comparison to the program, Graffiti. The subsequent sections
describe the form of conjectures and educational applications of Graffiti.pc to
undergraduate research in graph theory.

1. Introduction

Graffiti.pc is a conjecture-making computer program whose design was strongly
influenced by the design of the conjecture-making program Graffiti. The program
Graffiti was written in the mid-1980s by Siemion Fajtlowicz of the University of
Houston. As his student in the early 1990s, the author contributed to the devel-
opment of the most recent versions of Graffiti [6]. While that experience strongly
influenced the design of the new program, Graffiti.pc, it is appropriate to note that
the initial goals for the creation of the respective programs were distinct. A main
short-term goal in the creation of Graffiti.pc was to have a user-friendly PC plat-
form Graffiti-like program, which undergraduate students could utilize. Whereas
almost from the onset of Graffiti’s creation, Fajtlowicz was announcing conjectures
to other researchers, but did not design it with other users in mind until recently
[7]. Consequently, most comparisons of the programs, in this paper, are intended
only as points of reference.

In the summer of 2001, Graffiti.pc’s creation was realized (by the author) and
this is the program under discussion in this paper. In particular, the focus will be
a description of the program followed by a description of undergraduate research
applications.
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Figure 1. Graffiti.pc Interface.

2. Graffiti.pc Description

Given a collection of mathematical objects, in this case a collection of graphs1,
which will be referred to as models, and a collection of numerical invariants, com-
putable for each model, Graffiti.pc generates a system of inequalities (conjectures)
between combinations of the invariants. The three integral components of Graf-
fiti.pc consist of the C++ subprograms BuildDbs, dalmatians, and the Visual Basic
user interface (see Figure 1.) The subprogram BuildDbs builds a two dimensional
database indexed by models and invariants. The database generated by BuildDbs
is input for the subprogram dalmatians, which implements Siemion Fajtlowicz’s
dalmatian heuristic for generating conjectures; we describe the heuristic in detail in
the following section. As seen in Figure 1, the user interface provides for user selec-
tion of models and invariants, execution of the Builddbs subprogram, user selection
of parameters for, and execution of, the dalmatians subprogram. In addition to the
database generated by Builddbs, the subprogram dalmatians expects the user to
select a fixed invariant2, and a relation (inequality or equality). Given this input,

1Thus far, Graffiti.pc has only been utilized with graphs as mathematical objects, however,
Graffiti has been utilized with other objects such as polygons and sequences (see [9].)

2In practice, a term (algebraic express) can be fixed, but this option is not available through
the interface at this time.
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the dalmatians subprogram generates conjectures; in section 2.2, we provide an ex-
ample of this process. During or after its execution the user may view conjectures,
submit counterexample(s), and choose to re-execute3 the dalmatians subprogram.

By comparison to Graffiti’s database support program Algernon, in 2001 Graf-
fiti.pc’s BuildDbs was limited in the number of available graph theoretical invari-
ants. At its inception, it had the capability of generating about one hundred and
thirty graph theoretical invariants, most of which were on degree and distance
invariants of a graph, its complement graph and its second power graph4. How-
ever, Graffiti.pc’s dalmatians subprogram very closely implements the principles of
Fajtlowicz’s dalmatian heuristic as described in the next section; a more detailed
description is found in [4]. Overall, the most striking difference is Graffiti.pc’s
graphical user interface, since Graffiti is a Unix platform, menu and file driven
program. Moreover, while both programs allow the user to select the relation, in-
variants and graphs for the database, another noticeable difference is that Graffiti.pc
allows a user control over the algebraic operations utilized to generate expressions
that result in conjectures.

2.1. The Dalmatian Heuristic. Siemion Fajtlowicz’s conjecture-making dal-
matian heuristic was described by him in [6] as follows:

“The program keeps track of conjectures made in the past and
when it runs across a new candidate for a conjecture then first of
all it verifies if there is an example (in the database) demonstrating
that the conjecture does not follow from the previous conjectures.
If there is no such example then the conjecture is rejected as non-
informative. If there is one, then the program proceeds with testing
the correctness of the conjecture, and finally it verifies whether the
conjecture should be rejected by one of its other heuristics. If the
conjecture is accepted by the program then the list of conjectures
is revised and those conjectures which are less informative than
the new one are removed from the list and stored separately in the
case the new conjecture will be refuted in the future”.

As in Graffiti, for each conjecture selected by the program to appear on its list of
reported conjectures, the number of models in the database for which the relation (≤
,≥, or =), between the (user) selected invariant and (program) conjectured bound,
is actually equality is called the touch number of the conjecture.

The implementation of the dalmatian heuristic by Graffiti.pc begins in the same
manner as described by Fajtlowicz. The first step in which it differs is that before
accepting a relation as a conjecture, the program first verifies if the touch number
is at least the user-specified minimum touch number. The option of a minimum
touch number was motivated by the experience of working on conjectures of Graffiti.
The next step in which the dalmatian implementation differs is in the removal of
conjectures. In Graffiti.pc, a variant of the irin heuristic5 [8] is used first to remove
conjectures if they follow by transitivity from the new conjecture. Note that in

3At this time, Graffiti.pc, unlike Graffiti, does not have an option for resuming the generation
of conjectures.

4The second power of a graph G = (V, E), is the graph on vertex set V such that two vertices
are adjacent if and only if the vertices are at distance at most two in the graph G.

5Irin is a heuristic which rejects conjectures if they follow by transitivity from other conjec-
tures made by the program.
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Fajtlowicz’s description of the dalmatian heuristic the removal of such conjectures
is accomplished in any case, however for Graffiti.pc the decision was made to seize
the opportunity to report such relations. The results are stored separately as they
are not a part of the dalmatians list of conjectures. An example of such a conjecture
is described in the next section.

The above-mentioned differences in the dalmatian heuristic implementations of
the two programs are minor. The central ideas remain the same; put simply, the
programs accept a new conjecture if it contributes something new to the current
list of conjectures, and they both remove existing conjectures (from a maintained
list of accepted conjectures) if the new conjecture is better. In practice, the dalma-
tian heuristic stops if and only if for every graph G in the database there exists a
conjecture on the list whose touch number was contributed to by the graph. Thus
in addition to providing a list of conjectured bounds, say c1, c2,..., ck, for a user-
selected term, say x, the entire list is interpreted as the following conjecture. For
the sake of example, let us assume that the ci are lower bounds on x, that is for
every i, x ≥ ci.

For every graph G in a class of graphs (represented in the database),

x = maximum of {c1, c2,..., ck}.
2.2. Form of Conjectures. Likewise as in Graffiti (versions after 1992), con-

jectures are inequalities between terms of a Σ-Algebra, on the set of invariants in
the database, together with binary, and unary operations. In Graffiti.pc a term
is represented as a syntax tree, that is, a tree in which each node represents an
operator and the children of the node represent the operands. At present, Graf-
fiti.pc provides fourteen unary operations and five binary operations. Examples
of such operations are the reciprocal, the natural logarithm, ceiling, addition, and
multiplication.

Below are three conjectures for trees (connected acyclic graphs) of highest touch
number (each greater than 30% of the size of the model set) generated by Graffiti.pc.
Conjecture 2.4 is a product of the irin heuristic implemented by the program as
described previously. They are all correct; the first two are easily proven and the
last two are a bit more challenging as exercises. Further, since the relation in
Conjecture 2.3 is valid for all simple graphs, we note that, at present, the echo
heuristic6 has not been implemented in Graffiti.pc.

For the listed conjectures, the program parameters were set as follows. The
fixed term was the path covering number, the relation was greater than or equal
and the minimum touch was set to fifty. The model set was comprised of all trees
on fewer than twelve vertices, as generated by Brendan McKay’s program makeg
[10], and a hodgepodge of 26 other trees. The invariant set was comprised of 68 of
the available invariants.

The path covering number of a graph G, denoted by ρ(G), is the minimum
number of vertex disjoint paths needed to cover the vertices of the graph. The
number of leaves of a tree is the number of vertices of degree one. We put ∆(G) to
be the maximum degree of a graph G.

Conjecture 2.1. If the graph G is a tree, then ρ(G) ≥ ∆(G) − 1.

Conjecture 2.2. If the graph G is a tree, then ρ(G) ≥ ⌈
number of leaves

2

⌉
.

6The echo heuristic was described by Fajtlowicz in [8] as a heuristic that rejects conjectures
about a property of graphs if they can be generalized to a more general property of graphs.
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Let α(G) denote the maximum number of vertices of the graph which are
pairwise non-adjacent (i.e. the independence number of a graph) and n(G) the
number of vertices of a graph.

Conjecture 2.3. If the graph G is a tree, then ρ(G) ≥ 2α(G) − n(G).

Let E(v) be the number of vertices at even distance from vertex v. Let Emax

be the maximum of E(v) over all vertices of the graph, and similarly let Emin be
the minimum of E(v) over all vertices of the graph.

Conjecture 2.4. If the graph G is a tree, then 2α(G)−n(G) ≥ Emax−Emin.

The main objective for listing the conjectures in this paper was to demonstrate
the algebraic form of conjectures. We observe that it seems that the main difference
between an educational and research version of the program is the simplicity of the
invariant set. Thus, given Graffiti.pc’s limited invariant set, only conjectures for
which the dalmatians program reported a significantly high touch number were
reported. From experience, as was the case in this execution of the program, it
seems that conjectures of high touch number (relative to the model set) are usually
correct.

On a technical note, the first two conjectures appeared almost immediately and
a while later the program reported that ρ(G) ≥ Emax −Emin, which several hours
later was replaced by the third conjecture listed above. The program did not stop
by reaching the halting condition. The program execution was interrupted (after
it ran for a day), at which time there were 120 trees in the database that did not
contribute to the touch number of any conjecture on the list.

3. Educational Application

Graffiti.pc’s initial application was primarily educational. In particular, under-
graduate students have used the program’s conjectures as the topic of their senior
projects7. Barbara Chervenka’s project was completed in December 2001; her ac-
tivities and results are described in this paper. The first phase of her project was
to resolve conjectures, which were lower bounds on the sum of the independence
number and the clique number8 of a graph. Courtesy of Siemion Fajtlowicz and
the University of Houston Mathematics Department, conjectures of this phase of
her project were generated by Graffiti on that campus’ alpha computers.

At about the time that the topic for conjectures was changed, which was also
about the same time that Graffiti.pc was created, Fajtlowicz announced a set of
rules to follow while working on conjectures. The rules are called the Red Burton
rules [7]. With the previously mentioned changes in place, Chervenka began the
second phase of her senior project. The input for the program was the database,
which was composed of the complete graph on one vertex as the model set, and the
alpha-core number (the number of vertices common to all maximum independent
sets) and invariants of the degree sequence of a graph as the invariant set. The
fixed invariant was the alpha-core number, and the relation was greater than or

7Senior projects at the University of Houston-Downtown are intensive studies under the
guidance of a member of the mathematics faculty which culminate in an individually researched
and formally written report and oral presentation.

8The clique number of a graph is the maximum number of vertices of the graph which are
pairwise adjacent.
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equal. A modification of the Red Burton rules, which are described below, were
utilized for this project.

1. The first conjecture to appear on the list will be resolved. (Note that in
Graffiti.pc, if the conjectures remain unsorted by touch number then it is
usually the case that the first is the most simply stated conjecture).

2. If the resolved conjecture is false then find the minimum number of ver-
tices in a counterexample, and next the minimum number of edges of a
counterexample with the minimum number of vertices. In this case, the
counterexample is added to the database.

3. If the resolved conjecture is true then characterize the case of equality and
determine if one can verify in polynomial time that a graph has the character-
ization described. In the case that such a characterization is accomplished,
graphs from the class are forbidden from the database; further, any coun-
terexamples for subsequent conjectures cannot be in this class of graphs.
Otherwise, the next conjecture on the list is resolved.

After about two months into the second phase of the project, her partial result was
a characterization of the alpha-core number in terms of concepts involving only
the degree sequence of a graph for the class of graphs comprised of stars, complete
graphs, complete graphs minus an edge, complete graphs minus a triangle, and
complete graphs minus a triangle and minus an edge disjoint from the triangle.
Her result is stated as follows.

Let G be a simple graph, E(G) its set of edges, and G the complement graph
of G. Let Km denote a complete graph on m vertices, and let Km denote the
m-vertex graph with no edges. Let K3,2 denote the complete bipartite graph with
the parts having 3 and 2 vertices, respectively. The join of graphs G and H is the
graph obtained from the union of G and H by adding edges {u, v} where u is a
vertex of G and v is a vertex of H . The alpha-core number of G, denoted by αc(G),
is the cardinality of the intersection of all maximum independent sets of the graph
G. The length of a graph G is defined as the square root of the sum of the squares
of degrees of the vertices of G.

Theorem 3.1 (Chervenka [2]). If G is a simple connected graph,

αc(G) =




∣∣E(G)
∣∣ if G ' join(K1, Dm) for m ≥ 2

2
∣∣E(G)

∣∣ if G ' Km or join(Km, D2) for m ≥ 2
bLength(G)c if G ' join(Km, D3) for m ≥ 2 or

join(Km, K3,2) for m ≥ 0
?

At the end of her project the pending list (List 11) of conjectures for simple
connected graphs was as follows:

If G is not isomorphic to Km, join(Km, D2) for m ≥ 2, join(K1, Dm)
for m ≥ 2, join(Km, D3) for m ≥ 2 nor join(Km, K3,2) for m ≥ 0,
then

1. αc(G) ≤ 1+ 2nd smallest element in the set of degrees of G.
2. αc(G) ≤ 1+ the maximum degree of the complement of G.
3. αc(G) ≤ 2 ∗ (the frequency of the maximum degree of G).
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Formally, the project ended; nevertheless, Chervenka determined that the first
and last conjectures are false and the second is true. The next step called for the
determination of a smallest counterexample to the first statement.

During the first phase of the project, the goal of working on conjectures was
simply to resolve as many as possible. However, through some appropriate prompt-
ing of the student, the program’s response to counterexamples was emphasized. As
a result, she eventually learned to look for families of counterexamples, special
classes of graphs on which the conjecture may be true, and to characterize the case
of equality for a proven conjecture. Moreover, in the early phase of the project she
was encouraged to find counterexamples on the smallest possible number of vertices
and then the smallest number of edges on that number of vertices. Early on, one
motivation for this was to provide statements relevant to conjectures, that required
proof, but eventually in the second phase of the project, this skill was compulsory.
By the end of the project, Chervenka had examined, in varying degrees, over 80
conjectures, and almost half were resolved. The chronology and details of which are
described in her senior project report [2]. Aside from the obvious difference of the
selected term, the first phase and second phase of her project differed in that the
conjectures generated by Graffiti were announced by the author (as the research
advisor), whereas by list 3 of the second phase, she was reporting the conjectures
as she was the user of Graffiti.pc.

In addition to providing the previously cited student research opportunities,
another advantage of using Graffiti.pc (and Graffiti) as a pedagogical tool was that,
by the nature of how the programs were utilized, the difficulty level of conjectures
increased as the students’ knowledge and the number of graphs in the database
increased. Further, as an educator, the abundance of good problems accessible to
students, even undergraduate students, was stimulating. But the potential is even
greater as Fajtlowicz observed in [7], “If the students wish to, they may, run the
program according to their own rules or simply by working on conjectures of their
own choice, ending up with highly personalized exercises and problems”.

4. Recent Developments

Most changes to the 2002 “Graffiti.pc” paper [5] were minor; however, some
comments and explanations were added for clarity in the Dalmatian Heuristic and
Form of Conjectures sections. There have been recent developments in the imple-
mentation of Graffiti.pc as an educational tool. Firstly, since the publication of [5]
three other students9 have completed their senior projects on graph theory utilizing
Graffiti.pc; included in this section are descriptions of two results of those projects.
Secondly, as a consequence of our participation in the DIMACS workshop, Gun-
nar Brinkman utilized Graffiti.pc in a graduate graph theory course (for pre-service
teachers) during the spring of 2002; and in the spring of 2004, he conducted a work-
shop utilizing Graffiti.pc at the University of Bielefeld in Germany for teachers of
advanced high school students.

4.1. On the Number of Triangles of a Graph. One senior project included
an investigation of the graph invariant the number of triangles (i.e. the number of
K3’s) of a graph. The motivation for adding this graph invariant to Graffiti.pc came
after a special case of a problem (described in [3]) of Paul Erdős (and generalized

9The students were Kelly Wroblewski who graduated Dec. 2002, Laura Salazar and Zahra
Salehpoor who both graduated May 2003
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by Béla Bollobás) was discussed during the DIMACS workshop. The statement
of the problem is as follows, “what is the maximum number of K4 subgraphs a
simple graph can contain if it has at most x triangles?”. This project began by
investigating upper bounds on the number of K3’s of a graph. Since as usual, the
investigation began with only K1 in the database of graphs, many conjectures were
disproved (some by finding a smallest counterexample), families of counterexamples
were determined, and some conjectures were proven (some only for special cases).
The highlight result of this project, was a proof of a special case of the Erdős-Hanani
result, see [3]. The statement proven in the project is that the maximum number
of K3 subgraphs a simple graph can contain is 5, if it has at most 8 edges. In the
notation of Bollobás, the result is k3(k2 ≤ 8) = 5. While this, of course, is a special
case of a known result (but certainly very appropriate for undergraduate research),
the reason that it is of special interest here is that one of Graffiti.pc’s conjectures
was used as a lemma for the proof. This proven conjecture of Graffiti.pc is given
as the following simple proposition, after the necessary notation is provided. Let
G be a simple graph, and v a vertex of the graph. Let T (v) be the number of
triangles incident to the vertex v and Tmax the maximum of T (v) over all vertices
of G. Lastly, let T (G) denote the number of triangles of the graph G.

Proposition 4.1. For G a simple graph, T (G) ≤ n(G)∗Tmax

3 .

We note that this conjecture of Graffiti.pc did not make it to the final list
of conjectures on that execution of the program; due to a numerical error, it was
being reported as one of the best conjectures for a period in the program. In any
case, the student promptly realized that it was correct, and used it to prove that
k3(k2 ≤ 8) = 5 [11]. The conjecture that eventually replaced it (after numerical
errors were dealt with) was the following stronger statement, which we observe is
a special case of a generalization of the Handshaking Theorem10.

Proposition 4.2. For G a simple graph, T (G) = [
∑

v∈V (G) T (v)]/3.

4.2. Related to Graffiti’s #158. During one instance of another senior
project, a student was resolving conjectures on the independence number of a graph.
Of particular interest was the following conjecture encountered in one of Graffiti.pc’s
lists, which the student subsequently proved; it is listed next as a proposition. For
G a simple graph, we let α(G) be the independence number of the graph G and
∆(G) the maximum degree of G.

Proposition 4.3. Let G be a simple graph. If G is not an empty graph, then

α(G) ≤ the maximum of{∆(G), ∆(G)}.
Let G be a simple graph, and let δ(G) be the minimum degree of G. In Written

on the Wall [9] conjecture number 158, which is known to be correct11, is presented
here as the following proposition.

10In most discrete mathematics textbooks one can find the statement that twice the number

of edges of a graph is equal to the sum of the degrees; a obvious generalization is that for k an
integer such that k ≥ 2,, k times the number of complete k-vertex subgraphs of a graph is equal
to the sum of the number of k-vertex subgraphs incident to vertices.

11It was listed between two sets of ***, which indicates that it was considered an exercise.
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Proposition 4.4. Let G be a simple graph. Then

α(G) ≤ n(G) − δ(G).

This inequality is easily shown to be equivalent to α(G) ≤ 1+∆(G), which the
student had also proven, as it was on a list of Graffiti.pc’s conjectures. Moreover,
she used Proposition 4.4 (in the latter equivalent form) to prove Proposition 4.3.
We observe that Proposition 4.3 (Graffiti.pc’s conjecture) follows from the case
of equality (proven by Brewster et. al. in [1]) of Proposition 4.4. However, what
seemed interesting (to the author) about α(G) ≤ the maximum of {∆(G), ∆(G)} is
that its proof (as opposed to the research advisor) prompted the student to consider
the case of equality of α(G) ≤ 1 + ∆(G).
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