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Project Description and Background: 
 
Start date: February 2, 2001 
 
Prior to beginning this project, my only experience 
with Graph Theory was two lectures within a larger 
Discrete Math class.  My senior project advisor, Dr. 
Ermelinda DeLaVina, suggested an exploration of 
graph theory through conjectures from the program 
Graffiti (see description below). We began with a base 
graph of K1, which is simply a single vertex, and 
requested conjectures in relation to the fixed concepts 
of independence (αG) and clique (ωG).  My task is to 
prove or disprove the conjectures presented.  My 
counterexamples are added to the database, and a new 



list of conjectures is generated. 
 
 
Program Description: 
 
The computer program Graffiti is a creation of Dr. 
Siemion Fajtlowicz of the University of Houston that 
was developed jointly with Dr. DeLaVina.  This 
program takes as input a database which can be 
thought of as a two dimensional array indexed by 
models (in this case graphs) and concepts (in this case 
graph concepts).  With this information, the program 
returns graph theoretical conjectures  
 
For this project, we have fixed the concept of the sum 
of the independence number (ααG) of the graph, G, 
and the clique number (ωωG) of G.  All conjectures 
will be of the form:  
 
Let G be some connected graph. 

conceptsgraph other  of                             

composed expression algebraic Some≥+ GG ωα
 



Current Data: 
Total number of conjectures presented:  45 
     Conjectures proven:      6 
     Conjectures disproven: 25 
     (Counterexamples used: 20) 
     Open conjectures:   11
     Unresolved conjectures 
      removed by program:   3 
 
 
Definitions of non-standard terms used: 
Minimode: least commonly occurring value in sequence 
Length: 
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Average distance: For u,v ∈ VG, d(u,v) is the shortest u,v-path.  
Average distance is the average of the d(u,v), ∀ u,v ∈ VG, 
u≠v 

Jump of degree: Put the degree sequence in ascending order, 
then a jump is the difference between consecutive values. 

Harmonic mean: Let k be the number of non-isolated vertices of 
G.  Then, 
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Session Models Conjectures Status 
G of  verticesofnumber 1 +≥+ GG ωα  Counterexample: 

C4 
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Counterexample: 
Windmill6 

G of  verticesofnumber  ≥+ GG ωα  Counterexample: 
C6 
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Proved 
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See session 6 
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Counterexample: 
K2 
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Counterexample: 
K4 
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Counterexample: 
K5 

G of   

 verticesisolated ofnumber 1+≥+ GG ωα
 

Proved 

G of degree minimum1+≥+ GG ωα  Unresolved, but 
removed by 
program 
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See session 7 
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Counterexample: 
Pie6 

 

GGG αωα 2
3≥+  Counterexample: 
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See session 7 
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Counterexample: 
C5 
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See session 8   
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Counterexample: 
Spider2 
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See session 9 

G) of degrees oflength ln(+≥+ GGG αωα  Counterexample: 
Ramsey(3,4) 
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See session 9   

G of   

 sequence degree of mode2 +≥+ GG ωα
 

Counterexample: 
CircleStar7   

GGG αωα +≥+ 1  Proved 
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Unresolved, but 
removed by 
program 
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Counterexample: 
Spider4 
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Counterexample: 
Spider4 
 

G of degree minimum2 +≥+ GG ωα  Counterexample: 
CircleStar7 with 2 
edges 

9 Ramsey(3,4) 
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GGG ααωα +=+ G  Proved 10 Spider4 

 
 
 

CircleStar7 
with 2 edges 
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Counterexample: 
G11 with 12 
diagonals 

2-sequence) degree of (range degree  

minimum - degree Maximum ≥+ GG ωα
 

Counterexample: 
Windmill7 with 1 
leg 

G) of  verticesof(number 1 2
1+≥+ GG ωα  See session 12 
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See session 12 
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Previously Proven 

GGG αωα +≥+ 1  Previously Proven 
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1G ofDiameter +≥+ GG ωα  Counterexample: 
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Proved 

G of sequence degree of mode1+≥+ GG ωα  See session 12 
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Open 

2-G of sequence   

 degree of jump Maximum≥+ GG ωα
 

Open 

12 Partial 
CircleStar9 

 

 

 

 
 
 
 

G11 with 12 
diagonals 

 
 

 
 
 
 
 
 1-G) of sequence degree   
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Open 



 Gin  degrees oflength 2
1≥+ GG ωα  Counterexample: 

Monster11 

)G ofmean  harmonicln(2≥+ GG ωα  Open 
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Counterexample: 
Monster11 

G) of  verticesof(number 1 2
1+≥+ GG ωα  Counterexample: 

Monster11 
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Open 
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Counterexample: 
Spider6 

G ofty eccentrici average1+≥+ GG ωα  Open 

G of sequence  

degreein  1 degree offrequency ≥+ GG ωα
 

Open 

G of degree average1+≥+ GG ωα  Open 

G of sequence degree of mode1+≥+ GG ωα  Counterexample: 
Monster11 

  
Windmill7 
with 1 leg 

 
 
 
 
 
 

Path6 

G of degree minimum1+≥+ GG ωα  Open 
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