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Abstract. We discuss a conjecture of J. R. Griggs relating the
maximum number of leaves in a spanning tree of a simple, con-
nected graph to the order and independence number of the graph.
We prove a generalization of this conjecture made by the computer
program Graffiti, and discuss other similar conjectures, including
several generalizations of the theorem that the independence num-
ber of a simple, connected graph is not less than its radius.

1. Introduction

Graffiti, a computer program that makes conjectures, was written
by S. Fajtlowicz. A later version of this program, called Dalmatian,
was coauthored with E. DeLaVina. An annotated listing of several
hundred of Graffiti’s conjectures, dating from the program’s inception
in the mid-1980’s, can be found in [8]. Graffiti has correctly conjec-
tured a number of new bounds for several well-studied graph invariants;
bibliographical information on resulting papers can be found in [3].

All graphs considered are simple and finite of order n. We let α =
α(G) denote the independence number of a graph G, and L = L(G) the
maximum number of leaves over all spanning trees of the graph. Let G
be graph, and suppose v is a vertex of G. Then the local independence
number at v is the independence number of the subgraph induced by
the neighbors of vertex v. Let µ = µ(G) be the maximum of the
local independence numbers taken over all vertices of G. A subset
of the vertices of G that spans a connected subgraph and dominates
the remaining vertices of G is called a connected dominating set for
G. The size of a smallest connected dominating set of G is called the
connected domination number of G. (Standard graph-theoretical terms
not defined in this paper can be found in [16].)
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In 1996, J. R. Griggs communicated the following conjecture to
DeLaVina.

Conjecture 1. (Griggs) Let G be a connected graph. Then

L ≥ n − 2α + 1.

Griggs further inquired as to whether Graffiti could make such a
conjecture. DeLaVina’s subsequent experiments with Graffiti resulted
in the program conjecturing a number of other lower bounds for the
invariant L. Many of these bounds are now known to be correct [2].
While determining L exactly is NP-hard [12], quite a few papers have
considered the problem of finding lower bounds for L (see [10], [11]
and [14]). Interestingly, Graffiti did not duplicate Griggs’ conjecture.
Instead, it discovered the following statement, which is stronger than
Griggs’ conjecture for graphs other than cliques.

Conjecture 2. (Graffiti) Let G be a connected graph. Then

L ≥ n + µ − 2α − 1.

A subset of vertices is a connected dominating set if and only if its
complement is the set of leaves of a spanning tree. Therefore, inequal-
ities of the form L ≥ n − i, where i is some graph invariant, are of
interest because i provides an upper bound on the connected dom-
ination number of G. These conjectures of Griggs and Graffiti state
inequalities of this form. The connected domination number of a graph
has been considered in several recent papers (see [1]).

DeLaVina and Fajtlowicz proved Griggs’ conjecture shortly after
Graffiti made the stronger conjecture. (Y. Caro communicated an in-
dependent proof to Griggs as well.) We defer all proofs until later in the
paper; however, the proof of Conjecture 2 (likewise the original proof of
Conjecture 1) is closely based on techniques used by Fajtlowicz and B.
Waller in [9] to prove the following Theorem 1. This theorem results
from one of Graffiti’s earliest conjectures. Alternative proofs of this
theorem are given by O. Favaron (see [8]) and Fajtlowicz (see [6]); the
result also follows from a lemma due to F. Chung quoted in [5]. We let
r = r(G) denote the radius of a graph G.

Theorem 1. (Fajtlowicz and Waller) Let G be a connected graph.
Then

α ≥ r.

The proof of Conjecture 2 can be extended to prove the following
Theorem 2 due to Fajtlowicz. Note again that Theorem 2 is a strength-
ening of Theorem 1 for graphs other than cliques. As far as we are
aware, it is the first known improvement of Theorem 1.
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Theorem 2. (Fajtlowicz) Let G be a connected graph. Then

α ≥ r + µ − 2.

For certain types of graphs, the inequality provided by Theorem 1
is sharp. For instance, paths and cycles of even order, or barbells with
odd diameter, have this property. Thus Theorem 2 provides a necessary
condition for this inequality to be sharp, namely, µ ≤ 2.

Fajtlowicz was inspired to suggest Theorem 2 because of another
generalization of Theorem 1 made by Graffiti. A collection of vertex
disjoint paths which cover all vertices of a graph G is called a path
covering of G. The size of a smallest path covering will be called the
path covering number of G; we use ρ = ρ(G) to denote this number.
In [13], L. Lovasz found a simple, but nice bound for the independence
number: α ≥ ρ. In light of this bound and Graffiti’s bound α ≥ r, the
following of Graffiti’s conjectures was of particular interest to us.

Conjecture 3. (Graffiti [7]) Let G be a connected graph. Then

α ≥ r + ρ − 1.

The “−1” term is required, for otherwise cliques with more than one
vertex would be obvious counterexamples. We note that the conjecture
is true for values of r ≤ 3; Lovasz proved this within hours of learning
of the conjecture [private communication]. However, DeLaVina and
Waller have found counterexamples to this conjecture for all r ≥ 4 [4].
In fact, they demonstrate a family of trees {Tk | k = 1, 2, 3, . . .} where

r(T2k) + ρ(T2k) − α(T2k) = k.

For the sake of completeness, we will repeat the construction of T2k in
the next section. Upon being informed of counterexamples to Conjec-
ture 3, Graffiti made the following two conjectures.

Conjecture 4. (Graffiti) Let G be a connected graph. Then

α ≥
⌊r

2

⌋
+ ρ.

Conjecture 5. (Graffiti) Let G be a connected graph. Then

α ≥ r +
ρ − 1

2
.

Figure 1 shows an example of equality for Conjectures 4 and 5. They
remain open in the general case. However, both conjectures are true
if restated for trees, as shown by the following two theorems. The
proof of Theorem 3 is derived from the counterexamples to Conjecture
4 mentioned earlier and is given in [4]; the proof of Theorem 4 is given
in the next section. In section 3, we list some additional conjectures
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Figure 1. Example of equality for Conjectures 4 and 5

regarding the independence number that Graffiti generated at the same
time as Conjectures 4 and 5.

Theorem 3. (DeLaVina and Waller) Let T be a tree of order more
than 2 and suppose d is the number of vertices contained on a path in
T of maximum length (i.e. d is one more than the diameter of T ). Put
x = bd/3c. If x is even, then

α ≥
(

2x

3x + 2

)
r + ρ.

On the other hand, suppose x is odd. Then

α ≥
(

2x

3x + 1

)
r + ρ.

Moreover, both bounds are sharp, for all possible values of x.

Theorem 4. Let T be a tree. Then

α ≥ r +
ρ − 1

2
.

Of course, this bound is sharp for paths of even order. The tree in
Figure 1 shows this bound is sharp, even when ρ > 1. Furthermore,
one can easily extend this tree to demonstrate other cases of equality
where ρ > 1, for all r ≥ 4.

2. Proofs of Main Results

Proof of Conjecture 2. In a 1986 paper by Fajtlowicz and Waller
[9], a connected dominating set was called a trunk, since any trunk for
G can be used to create a spanning tree where each of the non-trunk
vertices of G is a leaf of the spanning tree. Now in trying to establish
inequalities of the form L ≥ n− i, where i is some graph invariant, it is
enough to show that G has a connected dominating set with no more
than i vertices. Thus in order to prove Conjecture 2, we need only show
the existence of a connected dominating set of size at most 2α−µ+1.
Lemma 1 provides such a set. This lemma is essentially Waller’s Lemma
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5.2 given in [15]; however, for the purposes of this paper we begin with
a vertex that realizes maximum local independence.

Lemma 1. Suppose G is a connected graph such that µ ≥ 2 (i.e. G
is not a clique). Then there exists a maximal independent subset M
of the vertices of G, and a connected dominating set T containing M ,
such that T has no more than 2|M |−µ + 1 vertices.

Proof. Let c be a vertex such that the local independence number at
c is µ, and let S be a maximum independent subset of vertices of the
subgraph spanned by c and its neighbors. Since µ ≥ 2, it follows c /∈ S.
We will inductively construct a sequence T1, T2, . . . , Tk of subsets of
vertices of G where each subset spans a connected subgraph and Tk

is a connected dominating set. In addition, we will define sequences
M1, M2, . . . , Mk; B0, B1, . . . , Bk−1; and N1, N2, . . . , Nk of subsets of
vertices of G such that for j = 1, 2, . . . , k:

1) Mj is independent and |Mj | = µ + j − 1,
2) |Bj−1| ≤ j,
3) Nj is the set of all neighbors of vertices in Mj ,
4) Bj−1 ⊂ Nj , and
5) Bj−1 ∩ Mj = ∅ and Tj = Bj−1 ∪ Mj .

We begin by taking M1 = S, B0 = {c}, and T1 = M1 ∪ B0. Clearly
T1 spans a connected subgraph and Conditions 1–5 are satisfied.

Now suppose each of the sets Tj , Mj , Bj−1, and Nj have been de-
fined for j ≥ 1 and satisfy the given conditions. If Mj is a maximal
independent set, then Tj must be a connected dominating set, so we
put M = Mj and T = Tj and stop. Since,

|Tj| = |Bj−1 ∪ Mj | = |Bj−1|+|Mj| ≤ µ + 2j − 1 = 2|M |−µ + 1,
we are finished.

If Mj is not maximal, then because G is connected, there exists a
vertex v /∈ Mj ∪ Nj, and a vertex u ∈ Nj , such that v is adjacent to
u. Put Mj+1 = Mj ∪ {v}, Bj = Bj−1 ∪ {u}, and Tj+1 = Tj ∪ {v, u}.
Then again, clearly Tj+1 spans a connected subgraph and Conditions
1–5 are satisfied. The lemma now follows by induction.

Proof of Theorem 2. (DeLaVina and Fajtlowicz) We can assume G
is not a clique. Apply the algorithm described in the proof of Lemma 1
to G. Clearly the diameter of the subgraph spanned by T1 is 2. Let
Gj be a tree spanned by the vertices of Tj for j = 1, 2, . . . , k. Then for
j < k, one can assume the diameter of Gj+1 is at most two more than
the diameter of Gj. Hence, one can moreover assume the diameter of
Gk is at most 2k, and consequently, the radius of Gk is at most k.
But recall T = Tk is a dominating set for G, therefore the radius of G
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Figure 2. T4, a counterexample to Conjecture 3

is at most k + 1. Finally, recall M = Mk is an independent set and
|Mk| = µ + k − 1. Thus, α ≥ |M | = µ + k − 1 ≥ µ + r − 2.

Counterexamples to Conjecture 3. (DeLaVina and Waller) Consider
a path P3k with 3k vertices. Enumerate the vertices of P3k from left to
right as v0, v1, v2, . . . , v3k−1. Let Tk be the tree on 4k vertices formed
by attaching a single edge to P3k at each of the vertices vj where j = 1
(mod 3). Thus T1 is a star with 3 endpoints; T 2 is formed by taking
two copies of T1 and adding a single edge from an endpoint of one of
the stars to an endpoint of the other; and so forth. Figure 2 illustrates
T 4. It is easy to convince oneself, by inspection, that

r(T4) + ρ(T4) − α(T4) = 2.

In general, though, in [4] it is shown that for the tree T2k,

r(T2k) + ρ(T2k) − α(T2k) = k.

Proof of Theorem 4. Let P be a diametric path in T . Then we can
choose two disjoint independent sets A and B from P whose size meets
or exceeds the radius of T . Let F be the forest formed by deleting
P from T . If F is empty, then ρ = 1 and we are done. So suppose
otherwise. Let L be a minimum path covering of F , and let S be a set
formed by choosing one endpoint from each path in L. Thus S must
be an independent set in T, for if not, then L is not minimum. Note
also ρ ≤ |S|+1. Let M be the vertices in S adjacent to vertices in A
(with respect to T ), and likewise let N be the vertices in S adjacent to
vertices in B. Clearly M an N are disjoint. Assume |M | ≥ |N |. Then
|S−N | ≥ |N |. Note also B∪ (S−N) is an independent set in T . But,
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α ≥ |B ∪ (S − N)| = |B| + |S − N |

≥ r +
|S − N |+|S − N |+1 − 1

2

≥ r +
|S − N |+|N |+1 − 1

2

= r +
|S|+1 − 1

2

≥ r +
ρ − 1

2
.

3. Other Conjectures of Graffiti

Graffiti generated numerous other conjectures regarding the inde-
pendence number at the same time it generated Conjectures 4 and 5.
The conjectures listed here are a few of the more interesting or simply
stated of those.

Conjecture 6. (Graffiti) Let G be a graph. Then

α ≥ r + ln(ρ).

Conjecture 7. (Graffiti) Let G be a graph. Then

α ≥ ln(r) + ρ.

Conjecture 8. (Graffiti) Let G be a graph. Then

α ≥ ln(chromatic number of the complement).

Although the previous conjecture is false, it is of interest because it
suggests the classical problem of finding a minimal graph with (large)
chromatic number χ and (small) clique number ω. (See, for instance,
[16].) The complement of such a graph would be a counterexample.

Acknowledgments: The authors wish to thank the referee for com-
ments regarding the origin of Conjecture 1; and L. Lovasz for permis-
sion to quote his result regarding Conjecture 3.
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