Prop. Equiv. 1
Propositional Equivalences

Def. A compound proposition that is always true, no matter what the tlz:tr
values of the (simple) propositions that occur in it, is called tautology.
compound proposition that is always false, no matter what, is called a

2 contradiction. A proposition that is neither a tautology nor a contradiction

is called a contingency.

Examples: Let p be a proposition. Indicate whether the propositions are: / Z

(A) tautologies (B) contradictions or (C) contingencies. vV 7
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Definition. The propositions p and g are called logically equivalent if

@s a tautology The notation p = g denotes that p and g are logically ﬁ V 1
equivalent. Some text books use the notation p < ¢ tg denote that p and ¢ 7—- 7

are logically equivalent. ]D — a
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You must learn to determine if two propositions are logically equivalent by

the

« truth table method and

« by the logical proof method using the tables of logical equivalences (but % /o

Objective of the section:

not true tables)

Exercise 2: Use truth\@@tes-to-skoévtt = ' . i // SM
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Prop. Equiv. 2

Note: Any equivalence termed a “law’ will be proven by truth table, but
all others by proof (as we shall see next).

Equivalence Name
prT=p Identity laws
pv F=p
pv T=T Domination laws
pA F=F

i’ pv p=Ep Idempotent laws
PADP=EP
—~—p=p Double negation law

% pvg=qvp Commutative laws
Prg=4qnp
(pvq) v r=pv(qgvr) Associative laws
@rg) Anr=pa(g A T)
pv@narn=pvgn(pvr Distributive laws
prlgvin==@arqg v (pAar)
~(pArq)=-pv g < De Morgan's laws

// ~(pv@)=-pr —q

pv =p=T Negation laws
pA -p=F

—( - g)=-pvg Other useful logical equivalence

-~ > g)=—g—> —p .
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Exercise 3: State the name of the law used in the identity
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Exercise 4: Without truth tables to show that
—(=p A q)=pv —q
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Exercise 5: Without truth tables to show that
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Exercise 6: Without truth tables to show that
—pA(pv @)= -pA g
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Exercise 7: Without truth tables to show that
—(pv(=p rq)= (v q)
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Exercise 8: Without truth tables to show that (- p = ¢g)=pv q.
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Exercise 9: Without truth tables to show that - (p = ¢q)=p~ —q.

Exercise 10: Without truth tables to show that = (- p v (pv q)) »¢gisa
tautology.

Exercise 11: Without truth tables to show that an implication and it’s
contrapositive are logically equivalent.

Applications

In addition to providing a foundation for theorem proving, which we will
cover in this class, this algebraic look at logic can be studied further for the
purpose of discussion computer program correctness.



