Propositional Equivalences

Def. A compound proposition that is always true, no matter what the truth values of the (simple) propositions that occur in it, is called <u>tautology</u>. A compound proposition that is always false, no matter what, is called a <u>contradiction</u>. A proposition that is neither a tautology nor a contradiction

2

Examples: Let p be a proposition. Indicate whether the propositions are: (A) tautologies (B) contradictions or (C) contingencies.

(A) tautologies (D) contradictions of (C) contingen			
	Proposition	type	
R	$p \lor \neg p$	+antologn	
~[$p \land \neg p$	Contradiction	
	$p \wedge p$	(on fringencies	

Definition. The propositions *p* and *q* are called <u>logically equivalent</u> if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that *p* and *q* are logically equivalent. Some text books use the notation $p \Leftrightarrow q$ to denote that *p* and *q* are logically equivalent. $p \equiv q$

Objective of the section:

is called a **contingency**.

You must learn to determine if two propositions are logically equivalent by the

- truth table method **and**
- by the logical proof method using the tables of logical equivalences (but not true tables)

F W/O fruth table

T stands for true (Reminion) (q+0) = q $q \cdot 1 = q$

Exercise 1: Use truth tables to show that $\neg \neg p \equiv p$ (the double negation law) is valid.

Exercise 2: Use truth tables to show that $p \wedge T \equiv p$ (an identity law) is valid.

	Equivalence	Name	
5	$p \wedge T \equiv p$	Identity laws	
	$p \lor \mathbf{F} \equiv p$		
C	$p \lor T \equiv T$	Domination laws	
	$p \land \mathbf{F} \equiv \mathbf{F}$		
5	$p \lor p \equiv p$	Idempotent laws	
L	$p \land p \equiv p$		
	$\neg \neg p \equiv p$	Double negation law	
S	$p \lor q \equiv q \lor p$	Commutative laws	
5	$p \land q \equiv q \land p$		
_	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws	
	$(p \land q) \land r \equiv p \land (q \land r)$		
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws	
7	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		
	$\neg (p \land q) \equiv \neg p \lor \neg q \longleftarrow$	De Morgan's laws	
	$\neg (p \lor q) \equiv \neg p \land \neg q$		
5	$p \lor \neg p \equiv T$	Negation laws	
1	$p \land \neg p \equiv F$		
7	$p(p \to q) \equiv \neg p \lor q$	Other useful logical equivalence	
	$(p \to q) \equiv \neg q \to \neg p$		
l			

Note: Any equivalence termed a "law" will be proven by truth table, but all others by proof (as we shall see next).

Exercise 3: State the name of the law used in the identity

i.
$$\neg(\neg p \land q) \lor T \equiv T$$

ii. $T \lor \neg(\neg p \land q) \equiv \neg(\neg p \land q) \lor T$
ii. $\neg(\neg p \land q) \lor F \equiv \neg(\neg p \land q)$
iii. $\neg(\neg p \land q) \land T \equiv \neg(\neg p \land q)$
iv. $\neg(\neg p \land q) \equiv \neg \neg p \lor \neg q$
 \land

Exercise 4: Without truth tables to show that

٢

Exercise 5: *Without* truth tables to show that

 $7(p_1q) \vee (p_1q) \equiv (p_1q) \vee 7(p_1q)$ by commut. $\equiv T$ by Negution (an. $[\neg (p \land q) \lor (p \land q)] \equiv T$

Exercise 6: *Without* truth tables to show that

Exercise 8: *Without* truth tables to show that $(\neg p \rightarrow q) \equiv p \lor q$.

Exercise 9: *Without* truth tables to show that $\neg (p \rightarrow q) \equiv p \land \neg q$.

Exercise 10: *Without* truth tables to show that $\neg (\neg p \lor (p \lor q)) \rightarrow q$ is a tautology.

Exercise 11: *Without* truth tables to show that an implication and it's contrapositive are logically equivalent.

Applications

In addition to providing a foundation for theorem proving, which we will cover in this class, this algebraic look at logic can be studied further for the purpose of discussion computer program correctness.