Functions

Def. Let A and B be sets. A $\textbf{function f from A to B}$ is an assignment of exactly one element of B to each element of A.

$$\forall a \in A \ \exists! b \in B \ b \text{ is assigned to } a$$

$$\forall a \in A \ \exists! b \in B \ f(a) = b$$

Notation: If f is a function from A to B, we write $f: A \rightarrow B$ and then describe the rule for assignment (i.e. the relationship of elements A to elements of B).

Example 1:

True or False: f is a function from the set $A=\{1, 2, 3, 4, 5\}$ to the set $B=\{3, 4, 5, 6\}$ if the assignment rule is $f(1) = 3, f(2) = 3, f(3) = 1, f(3) = 2, f(4) = 5$.

True or False: f is a function from the set $A=\{1, 2, 3, 4, 5\}$ to the set $B=\{3, 4, 5, 6\}$ if the assignment rule is $f(1) = 3, f(2) = 3, f(3) = 4, f(3) = 2, f(4) = 5$.

True or False: f is a function from the set $A=\{1, 2, 3, 4, 5\}$ to the set $B=\{3, 4, 5, 6\}$ if the assignment rule is $f(1) = 3, f(2) = 3, f(3) = 4, f(3) = 2, f(4) = 5, f(5) = 6$.

Definition: A bit string is a sequence of 0’s and 1’s. Let us assume that the first bit is the rightmost bit.

Example 2: Determine whether f is a function from the set of all finite length bit strings to the set of integers if

a) $f(S)$ is the position of a 1 bit in the bit string S.

b) $f(S)$ is the smallest integer i such that the i^{th} bit of S is 1.

c) $f(S)$ is the smallest integer i such that the i^{th} bit of S is 1 and $f(S) = 0$ whenever S is the empty string or the constant 0’s string.
Example 3: Determine whether \(f \) is a function from the set of real numbers to the set of real numbers if

a) \(f(a) = \sqrt{a} \)

b) \(f(a) = a^2 \)

Definition.
- If \(f \) is a function from \(A \) to \(B \), we say that \(A \) is the domain of \(f \) and \(B \) is the codomain of \(f \).
- The range of \(f \) is the following set \(\{ b \mid \exists a \in A \ f(a) = b \} \) (Note that this is a subset of the codomain).
- Also, if \(f \) is a function from \(A \) to \(B \), we say that \(f \) maps \(A \) to \(B \).

Example 4: Let \(R \) denote the set of real numbers, and let \(Z \) denote the set of integers.
Define \(f:Z \rightarrow R \) by \(f(n) = \frac{n}{2} \).
Which set is the domain of \(f \)?
(a) \(R \) (b) \(Z \) (c) the set of even integers

Which set is the codomain of \(f \)?
(a) \(R \) (b) \(Z \) (c) the set of even integers

Which set is the range of \(f \)?
(a) \(R \) (b) the set of rational numbers with denominator 2 (c) the set of even integers

Example 5: Let \(Z \) be the set of integers, \(Z^+ \) be the set of positive integers, and \(Z^+ \cup \{0\} \) denote the set of nonnegative integers. Define \(f:Z \rightarrow Z \) by \(f(x) = x^2 \).

Which set is the codomain of \(f \)?
(a) \(Z \) (b) \(Z^+ \) (c) \(Z^+ \cup \{0\} \)

Which set is the range of \(f \)?
(a) \(Z \) (b) \(Z^+ \) (c) \(Z^+ \cup \{0\} \)
Special Functions

Definition: The floor function assigns to the real number \(x \) is the largest integer that is less than or equal to \(x \). The value of the floor function at \(x \) is denoted by \(\lfloor x \rfloor \).

Example 6: \(\lfloor 1.99 \rfloor = \underline{\ _\ } \), \(\lfloor 2.003 \rfloor = \underline{\ _\ } \), \(\lfloor -1.5 \rfloor = \underline{\ _\ } \)

- What is the domain of the floor function?
- What is the range of this floor function?

Example 7: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = 2\lfloor x \rfloor \)

- What is the range of \(f \)?
 (a) \(\mathbb{Z} \)
 (b) \(\mathbb{R} \)
 (c) neither \(a \) nor \(b \)

Definition: The ceiling function assigns to the real number \(x \) is the smallest integer that is greater than or equal to \(x \). The value of the ceiling function at \(x \) is denoted by \(\lceil x \rceil \).

Definition: Let \(A \) be a set. The identity function on \(A \) is the function \(i_A : A \to A \) where \(i_A(x) = x \).

Properties of Functions

Definition. A function \(f : A \to B \) is said to be one-to-one, or injective, if and only if \(f(x) = f(y) \) implies that \(x = y \) for all \(x \) and \(y \) in the domain of \(f \), that is if and only if \(\forall x \in A \forall y \in A (f(x) = f(y) \to (x = y)) \).

Example 8:

True or False: The function \(f \) from \(\{a, b, c, d\} \) to \(\{1, 2, 3, 4, 5\} \) with \(f(a) = 4, f(b) = 5, f(c) = 1, \) and \(f(d) = 3 \) is one-to-one.

True or False: The function \(f \) from \(\{a, b, c, d\} \) to \(\{1, 2, 3, 4, 5\} \) with \(f(a) = 4, f(b) = 4, f(c) = 1, \) and \(f(d) = 3 \) is one-to-one.

True or False: The function \(f(x) = x^2 \) from the set of integers to the
set of integers is one-to-one.

True or False: Let S be a bit string of length n. If we define $f(S)$ as the smallest integer i such that the i^{th} bit of S is 1 and $f(S) = 0$ when S is the empty string, then f one-to-one.

Observation:
A function $f:A \rightarrow B$ is one-to-one if and only if $\forall x \forall y (f(x) = f(y) \rightarrow x = y)$, which is logically equivalent to its contrapositive $\forall x \forall y (x \neq y \rightarrow f(x) \neq f(y))$.

Example 9: Prove that the real valued function $f(x) = x + 1$ is one-to-one.

Definition. A function f is said to be **onto**, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a) = b$.

$\forall b \in B \ \exists a \in A \ f(a) = b$

Example 10:

True or False: The function f from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by $f(a) = 3$, $f(b) = 2$, $f(c) = 1$, and $f(d) = 3$ is an onto function.

Example 11: Determine whether the real valued function $f(x) = x + 1$ is onto.

Example 12: Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is onto.
Definition. The function \(f \) is called a **one-to-one correspondence**, or a **bijection** if it is both one-to-one and onto.

Definition. Let \(f \) be a bijection from the set \(A \) to the set \(B \). The **inverse function of** \(f \) is the function that assigns to an element \(b \) belonging to \(B \) the unique element \(a \) in \(A \) such that \(f(a) = b \). The inverse function of \(f \) is denoted by \(f^{-1} \). Hence, \(f^{-1}(b) = a \) when \(f(a) = b \).

Terminology: A one-to-one correspondence is called **invertible**.

Example 13: Let \(f \) be the function from \(\{a, b, c\} \) to \(\{1, 2, 3\} \) defined by \(f(a) = 3 \), \(f(b) = 2 \), \(f(c) = 1 \). Is \(f \) an invertible function? If so describe the inverse function.

Example 14: Let \(f : Z \to Z \) defined by \(f(x) = x + 1 \). Is \(f \) invertible? If so describe the inverse function.

Example 15: Let \(f : Z \to Z \) defined by \(f(x) = x^2 \). Is \(f \) invertible? If so describe the inverse function.
Definition. Let \(g \) be a function from the set \(A \) to the set \(B \) and let \(f \) be a function from the set \(B \) to the set \(C \). The **composition of the functions** \(f \) and \(g \), denoted by \(f \circ g \), is defined by \((f \circ g)(x) = f(g(x)) \).

Example 16: Let \(f : Z \to Z \) and \(g : Z \to Z \) defined by \(f(x) = 2x + 3 \) and \(g(x) = 3x + 2 \). What is the composition of \(f \) and \(g \)? What is the composition of \(g \) and \(f \)?

Fact: Let \(f : A \to B \) be an invertible function. If \(f(a) = b \), then
\[
(f^{-1} \circ f)(a) = a \quad \text{and} \quad (f \circ f^{-1})(b) = b.
\]

Graphs of Functions

Definition. Let \(f : A \to B \). The **graph of the function** \(f \) is the set of ordered pairs \(\{(a, b) \mid a \in A \text{ and } f(a) = b\} \) (A graph is a subset of the Cartesian product \(A \times B \)).

Example 17: Let \(f : Z \to Z \) be defined by \(f(n) = 2n + 1 \). Display the graph of \(f \).

Example 18: Let \(f : R \to Z \) be defined by \(f(x) = \lfloor x \rfloor \). Display the graph of \(f \).

Example 19: Let \(f : Z \to Z \) be defined by \(f(x) = \lfloor \frac{x}{3} \rfloor \). Display the graph of \(f \).