If μ is the mean and σ is the standard deviation, the z-score of a value x is

$$z = \frac{x - \mu}{\sigma}.$$

Joint distributions

- Let X and Y be jointly discrete with joint probability mass function $p(x, y)$. Then
 - marginal probability mass functions for X and Y are defined as
 $$p_X(x) = \sum_y p(x, y) \quad \text{and} \quad p_Y(y) = \sum_x p(x, y)$$
 - conditional probability density functions are given by
 $$p_{X|Y}(x|y) = \frac{p(x, y)}{p_Y(y)} \quad \text{and} \quad p_{Y|X}(y|x) = \frac{p(x, y)}{p_X(x)}$$
 - conditional expectations are given by
 $$E(X|Y = y) = \sum_x x p_{X|Y}(x|y) \quad \text{and} \quad E(Y|X = x) = \sum_y y p_{Y|X}(y|x)$$
 - if $h(X, Y)$ is any function, then
 $$\mu_{h(X,Y)} = \sum_x \sum_y h(x, y)p(x, y)$$

- Let X and Y be jointly continuous with joint probability density function $f(x, y)$. Then
 - if a, b, c and d are arbitrary real numbers, then
 $$P(a < X < b \text{ and } c < Y < d) = \int_a^b \int_c^d f(x, y)dydx$$
 - marginal probability density functions for X and Y are defined as
 $$f_X(x) = \int_{-\infty}^{\infty} f(x, y)dy \quad \text{and} \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y)dx$$
 - conditional probability density functions are given by
 $$f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)} \quad \text{and} \quad f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}$$
 - conditional expectations are given by
 $$E(X|Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y)dx \quad \text{and} \quad E(Y|X = x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x)dy$$
 - if $h(X, Y)$ is any function, then
 $$\mu_{h(X,Y)} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y)f(x, y)dxdy$$
If X and Y are jointly distributed, then
- covariance of X and Y is given by

$$Cov(X, Y) = \mu_{XY} - \mu_X \mu_Y$$

- correlation of X and Y is given by

$$\rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

If X is a discrete random variable with probability mass function $p(x)$, then

$$\mu_X = \sum_x x p(x) \quad \text{and} \quad \sigma^2_X = \sum_x (x - \mu)^2 p(x).$$

If X is a continuous random variable with probability density function $f(x)$, then

$$\mu_X = \int_{-\infty}^{\infty} x f(x) dx \quad \text{and} \quad \sigma^2_X = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$