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ABSTRACT

Identifying the projective group for patterns by developing the camera model, the projective
Fourier transform and its inverse are obtained in analogy with the classical, that is, Euclidean
Fourier analysis. Projectively adapted properties are demonstrated in a numerical test. Using
the expression of the projective Fourier integral by a standard Fourier integral in the coordinates
given by the complex principal logarithm, the discrete projective Fourier transform and its inverse
are constructed showing that FFT algorithms can be adapted for their computations.

Keywords: Projective Fourier transform, projectively adapted pattern representation, dis-
crete projective Fourier transform, fast projective Fourier transform algorithms.

1 Introduction

It is well known that one can reconstruct any rotated and translated image using the only
one Fourier transform of the original image. When a perspective projection is applied, the
relationship between Fourier transforms of the original image and its distorted images is no
longer feasible. However, a representation of images such that one has a closed-form relation
between the representations of the original image and its projective distortions is an important
step in developing a system for automated perspective-independent object recognition.
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Motivated by this deficiency of the Fourier analysis, we have developed in3 its projective
analogue for patterns. The projectively adapted characteristics of this harmonic analysis were
confirmed by a numerical test in which projective distortions of a circular ring were reconstructed
using only the projective Fourier transform of the ring pattern.

In this paper, following4 , we develop the discrete projective Fourier transform of a pattern
and show that the FFT can be adapted to its computation. The explanation of this surprising
fact follows from the analogy of the projective harmonic analysis with the classical (Euclidean)
harmonic analysis. Briefly, the projective Fourier transform is defined using characters of the
abelian subgroup (isomorphic with the multiplicative group of nonzero complex numbers C∗) of
pattern’s projective group SL(2,C). However, these characters can be extended to a subgroup
of SL(2,C) that exhausts almost all projective distortions of a pattern.

This simpler aspect of the analysis will be stressed in this article. However, the projective
Fourier analysis can only be fully understood in terms of the representation theory of semisimple
Lie group SL(2,C), see3 , where also detailed exposition of related projective geometry has been
given.

2 The group of projective transformations for patterns

2.1 A pinhole camera

We start with the description of a pinhole camera. The pinhole, or optical center, of the
camera is the point where the incoming rays of light intersect each other, giving an image on the
image plane. The line passing through the optical center and perpendicular to the image plane
is called the optical axis of the camera.

In order to formulate a camera model quantitatively, we consider an image plane to be the
plane x2 = 1 in R3 = {(x1, x2, x3)t : xi ∈ R}. The image of (x1, x2, x3)t on the image plane is
given by the projection j : R3 → C defined by

j

 x1
x2
x3

 =
x3 + ix1

x2
(1)

where we have identified (x1, 1, x3)t in the image plane with z = x3 + ix1.

We restrict our discussion to patterns, that is, planar objects. Assuming that patterns ”live”
on the image plane x2 = 1, the projective distortions of a pattern are generated by translating
or rotating the pattern to form its ”virtual” space position and then projecting by (1) on the
image plane, and by all finite iterations of these basic distortions. We denote the set generated



by all such iterations by G× and we find it in (10) in Section 2.3.

2.2 The image plane as the complex projective line

The image plane can be regarded as the extended complex line bC = C ∪ {∞} with its affine
piece C given by the equation x2 = 1 if we require that

j

 x1
0
x3

 =∞.

Further, if we take

C2 =
½µ

z1
z2

¶
: z1 = x2 + iy, z2 = x3 + ix1

¾
then in the affine patch on bC given by z1 = 1, the points ξ 6=∞ of bC are identified with the points
where the lines z2 = ξz1 intersect the line z1 = 1, i.e., ξ = x3 + ix1. The point ∞ corresponds to
the line z1 = 0. It shows that bC can be identified with the complex projective line P 1(C) where,
roughly speaking,

P 1(C) =
©
lines (rays) of C2 through the origin

ª
.

The group SL(2,C), consisting of all 2×2 complex matrices of determinant 1, acts on nonzero
column vectors (z1, z2)t ∈ C2. In the affine patch on bC given by z1 = 1, one can easily check that
the action of the element

g =

µ
a b
c d

¶
∈ SL(2,C)

on C2 induces the action on slopes of the lines z2 = ξz1 given by ξ 7−→ ξ0 = (dξ + c)/(bξ + a).

Consequently, SL(2,C) acts on the image plane bC by linear-fractional transformations given
by

SL(2,C) 3 g : z 7−→ g · z = dz + c

bz + a
. (2)

and the projective group for patterns is the quotient

PSL(2,C) = SL(2,C)/± Id (3)

since both matrices ±g give the same orbit under the map (2).



2.3 The projective camera for patterns

The subgroup

SU(2) =

½µ
a −b
b a

¶
: |a|2 + |b|2 = 1

¾
is the maximal compact subgroup in SL(2,C).

One can show that for a rotation r ∈ SO(3) there are two elements k ∈ SU(2) such that
jr = kj where j is given in (1). Indeed, if

k = ±
µ

a −b
b a

¶
then

k · z = az + b

−bz + a
(4)

where

a = ± cos
µ
φ

2

¶
ei(ψ1+ψ2)/2 and b = ±i sin

µ
φ

2

¶
ei(ψ1−ψ2)/2 (5)

in which ψ1, φ and ψ2 are the Euler angles parametrizing r ∈ SO(3) such that ψ1 is the first
rotation angle about the x2-axis, φ is the following rotation angle about the rotated x1-axis, and
finally, ψ2 is the last rotation angle about the x2-axis, rotated by the previous two angles. This
choice implies that ψi give the rotations in the image plane x2 = 1 and φ gives the rotation out
of the image plane.

For translations b = (b1, b2,b3)t ∈ R3, there are also two elements

h = ±
µ

α 0
β α−1

¶
∈ SL(2,C)

acting by

h · ξ = α−1ξ + β

α
(6)

such that jb = hj where j is given in (1), α is given by

α = (1 + b2)
1/2 if 1 + b2 > 0 (7)

and by
α = i (|1 + b2|)1/2 if 1 + b2 < 0, (8)

and finally,
βα = (b3 + ib1). (9)

A simple implication of the last result is the factorization of h. We have two cases:



(1) If 1 + b2 > 0, then
h ∈ AN

(2) If 1 + b2 < 0, then

h = εAN, ε =

µ −i 0
0 i

¶
where

N =

½µ
1 0
γ 1

¶
: γ ∈ C

¾
and

A=

½µ
δ 0
0 δ−1

¶
: δ ∈ R+

¾
.

Now, it follows from (4), (6) and the choices of the image plane and Euler angles that the
subgroup SU(2) acting by linear-fractional transformations on the image plane C by

z 7−→
µ

a −b
b a

¶
· z = az + b

−bz + a

where a and b are given in (5), represents projective distortions produced by rotations of a camera
with the maximal torus in SU(2),

M =

½µ
eiθ 0
0 e−iθ

¶¾
,

representing the rotations of the camera about the optical axis.

Also, the linear-fractional transformations given by A (or given by εA),

z 7−→
µ

δ 0
0 δ−1

¶
· z = δ−2z

where δ is given by α in (7) (or by α in (8)), represent distortions produced by translations of a
camera in the direction of its optical axis. Finally, the group N acting by the linear-fractional
transformations on C by

z 7−→
µ
1 0
γ 1

¶
· z = z + γ

where γ is given by βα in (9), represents translations of a camera in the direction perpendicular
to the optical axis.



Now, it follows from the factorization

SL(2,C) = SU(2)ASU(2)

see Theorem 5.20 on p. 126 in1 , that all finite iterations of SU(2) and A generate the group
SL(2,C). Recalling (3), we conclude the projective camera model of Section 2.1 with the result:

G× = PSL(2,C). (10)

Thus, for a given pattern
P = {f : D→ R} (11)

with a bounded D ⊂ C, the orbit
PSL(2,C) 3 g 7−→ Pg = {fg−1 : gD→ R} (12)

provides projective classification of images as it exhausts all of the projectively distorted pat-
terns of P and that two patterns that are on different orbits are not related by a projective
transformation.

3 The projective Fourier transform

Here we give a simple development of the projective Fourier transform of square integrable
functions using characters and stressing the role played by the subgroups of the universal double
cover SL(2,C) of the projective group PSL(2,C). A fuller account, including representation
theory and the related projective geometry, has been given in3 .

The finite-dimensional irreducible unitary representations of the Borel subgroupB =MAN ⊂ SL(2,C),
where N = N

t
, are one-dimensional. Indeed, for b ∈ B, the representation T k,is is acting on the

one-dimensional Hilbert space C by T k,is(b)z = πk,s(b)z where

πk,s

µ
a b
0 a−1

¶
=

µ
a

|a|
¶k

|a|is (13)

with k ∈ Z and s ∈ R, and every such representation has this form (cf.2 ).

These representations can be obtained by extending to B the characters πk,s : MA → T,
where T is the circle group (T ∼= {z ∈ C : |z| = 1}), that are given as in (13) but with the matrix
element b = 0, see2 . Also, since the (abelian) subgroup MA is topologically isomorphic with
C∗, the multiplicative group of complex numbers, we have that πk,s in (13) are also characters
of the group C∗, that is,

πk,s (z) =

µ
z

|z|
¶k

|z|is, k ∈ Z and s ∈ R. (14)



It follows from the Gauss factorization

SL(2,C) .
= NMAN, (15)

where ” .=” means that the equality holds up to a lower dimensional subset, that B =MAN
exhausts essentially the projective part of SL(2,C), because N ∼= C describes translations in the
image plane.

Moreover, the resulting projective Fourier transform is extended, by the corresponding Plancherel’s
theorem, see3 , to an unitary transformation on the Hilbert space L2(C) with the norm ||f ||2 =µ

i
2

Z
|f(z)|2dzdz

¶1/2
where if z = x+ iy then i

2
dzdz = dxdy. Thus, lower-dimensional sets have

measure zero and therefore statements like (15) are allowable.

The classical (Euclidean) Fourier transform on L2(R2) is defined in terms of the characters
γk(x) = eik·x of the translation (abelian) subgroup R2 of Euclidean group SO(2)

.×R2. In analogy
with this classical case, taking a pattern (11) with a compact support D ⊂ C∗, the projective
Fourier transform bf(k, s) of f(z) is defined in terms of the characters (14) of the multiplicative
group C∗, that is, in terms of the irreducible unitary representations (13) of B, by

bf(k, s) = i

2

Z
f(z)

µ
z

|z|
¶−k

|z|−is−1dzdz. (16)

The extra factor |z|−1 in (16) unitarizes the transformation.

It can be proved (see,3 ) that the inverse projective Fourier transform, is

f(z) = (2π)−2
∞X

k=−∞

∞Z
−∞

bf(k, s)µ z

|z|
¶k

|z|is−1ds. (17)

It gives the decomposition of the pattern in terms of the characters (14) with the coefficients of
the decomposition given by the projective Fourier transform bf(k, s) given in (16).
We summarize the analysis given here as follows: The above projective Fourier decomposition

is the decomposition in terms of the simplest functions (13), that is, the irreducible unitary
representations of B, that mirror the projective subgroup B operations. Recall that by the Gauss
factorization (15), B essentially differs from the projective group SL(2,C) by (unimportant)
translations in the image plane.

We conclude that the projective distortions in (12) can be obtained using the only one pro-
jective Fourier transform of it as follows

Tgf(z) = f(g−1 · z)

= (2π)−2
∞X

k=−∞

∞Z
−∞

bf(k, s)µ g−1 · z
|g−1 · z|

¶k

|g−1 · z|is−1ds. (18)



4 The numerical test

This test (see3 ) demonstrates the projectively adapted properties of the projective Fourier
transform. Here, the circular ring pattern is reconstructed using (17) in Figure 1.

Figure 1

The pattern is next projectively distorted by applying

g =

µ
cos φ

2
i sin φ

2

i sin φ
2

cos φ
2

¶
which represents rotation (out of the image plane x2 = 1) by the angle φ about x1-axis of the
ring pattern and projecting it back on the image plane. Computer simulations of (18) with

g−1z =
z cos φ

2
− i sin φ

2

−iz sin φ
2
+ cos φ

2

, (19)

are shown in Figure 2 for φ = 21.6◦ and in Figure 3 for φ = 30◦.
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Thus, we have produced the pattern’s projective distortions from the only one projective
Fourier transform of the original pattern, which confirm projectively adapted characteristics of
the image analysis based on the projective Fourier transform.

In the remaining part of this presentation we develop the two steps: the projective Fourier
series and the discrete projective Fourier transformwith its inverse, leading to the implementation
of the fast Fourier transform algorithms in calculating the projective Fourier transform. For
a full exposition and implementations of algorithms for fast calculations of projective Fourier
transforms, including also discrete projective convolutions, see4 .

5 The projective Fourier series

By introducing the parametrization by the polar coordinates (r, θ), r > 0 and 0 ≤ θ < 2π,
given by z = reiθ into (16) and writing r = eu we obtain after a simple calculation

bf(k, s) = ∞Z
−∞

2πZ
0

f(eu+iθ)eue−i(kθ+us)dθdu, (20)

which is the projective Fourier transform of f expressed by the standard Fourier transform in
the coordinates (u, θ).

In order to derive the projective Fourier series we need to extend periodically the function

g(u, θ) = f(eu+iθ)eu



in the u-coordinate (g(u, θ) is periodic in the θ-coordinate).

To do this, we replace the domain D of a pattern P = {f : D→ R} by a sector Ds = [0, T ]×£
0, 2π

L

¤
, scaling the pattern if necessary, and extend periodically the function Ds 3 (u, θ) 7−→

g(u, θ) in the u-coordinate (using the same name for the extension) by g(u +mT, θ) = g(u, θ).
This implies the condition on the extension of f ,

f(eu+mT+ikθ) = f(eu+ikθ)e−mT (21)

where m ∈ Z.

Now, the projective Fourier transform (16) can be written as

bf(k, s) = TZ
0

2π/LZ
0

g(u, θ)e−i(kθ+su)dθdu. (22)

Next, we define the function h by

h(ϑ, γ) = g(u, θ) = g(
ϑT

2π
,
γ

L
)

where the new variables ϑ and γ are given by ϑ = 2πu
T
and γ = Lθ, which is 2π-periodic w.r.

to both variables, and therefore it can be expanded in a double Fourier series. Expressing this
series in terms of g(u, θ) rather than h(ϑ, γ) and comparing it with the expression for bf(k, s) in
(22), we obtain

bf(2πm/T, nL) =

TZ
0

2π/LZ
0

g(u, θ)e−i(2πmu/T+nθL)dθdu (23)

and

g(u, θ) =
L

2πT

∞X
m=−∞

∞X
n=−∞

bf(2πm/T, nL)ei(2πmu/T+nθL). (24)

Finally, introducing g(u, θ) = f(eu+iθ)eu and

e−i(2πmu/T+nθL) = r−i2πm/T e−inLθ = (z/|z|)−nL |z|−i2πm/T ,

into (23) and (24), we easily arrive at

bf(2πm/T, nL) =
i

2

Z
f(z)

µ
z

|z|
¶−nL

|z|−i2πm/T−1dzdz

and

f(z) =
L

2πT

∞X
m=−∞

∞X
n=−∞

bf(2πm/T, nL)

µ
z

|z|
¶−nL

|z|−i2πm/T−1, (25)

which we call the projective Fourier series of the function f satisfying (21).



6 The discrete projective Fourier transform

Now we will proceed with our main approximation procedure. We approximate the integral
in (23) by a double Riemann sum

M−1X
k=0

N−1X
l=0

2πT

LNM
g(kT/M, l2π/LN)e−2πi(mk/M+nl/N) (26)

and define fk,l and bfm,n as follows

fk,le
kT/M =

2πT

LNM
g(kT/M, l2π/LN) (27)

and bfm,n =
M−1X
k=0

N−1X
l=0

fk,le
kT/Me−2πi(km/M+ln/N). (28)

Clearly, the sequence { bfm,n} is doubly periodic with period (M,N):

bfm+M,n+N = bfm,n.

Now, introducing these definitions and the relation

zm,n = emT/Mei
2πn
LN = rme

iθn

into (26) and (28) we arrive at

bfm,n =
M−1X
k=0

N−1X
l=0

fk,l

µ
zk,l
|zk,l|

¶−nL
|zk,l|−i2πm/T−1 (29)

and

fk,l =
1

MN

M−1X
m=0

N−1X
n=0

bfm,n

µ
zk,l
|zk,l|

¶nL

|zk,l|i2πm/T−1 (30)

for functions fk,l satisfying
fk+mM,l+nL = fk,le

−mT

where m, n ∈ Z.

The expressions in (29) and (30) are called the (M,N)-point discrete projective Fourier trans-
form and its inverse discrete projective Fourier transform, respectively, and (29) provides an
approximation bfm,n ≈ bf(2πm/T, nL)

of the projective Fourier transform (16) of the pattern.



The inverse transform in (30) demonstrates the projectively adapted properties as for any
g ∈ SL(2,C)

f(g−1 · zk,l) = L

2πT

M−1X
m=0

N−1X
n=0

bfm,n

µ
g−1 · zk,l
|g−1 · zk,l|

¶nL

|g−1 · zk,l| i2πmT −1 (31)

produces the corresponding projective distortion of the pattern

f(zk,l) =
LMN

2πT
fk,l,

and this distortion is expressed only in terms of the projective discrete Fourier transform bfm,n

given in (29).

7 FFT in reconstructions of projectively distorted
patterns

In conclusion, the discrete projective Fourier transform (29) and its inverse (30) demonstrate
that we need the same number of operations (an operation is defined to mean a complex multipli-
cation followed by a complex addition) as in the classical case, that is, at least (M − 1)2(N − 1)2
operations for M ×N sampled points.

Thus, to compute the projective Fourier transform shouldn’t be more difficult than in the
case of the classical Fourier transform, and in fact, one can adapt in rather straightforward way
the algorithms of FFT as they are presently used in image processing.

Moreover, (31) shows that one can adapt rather easily the FFT algorithms for a fast recon-
struction of any projective distortion of a pattern. These projectively adapted algorithms are
presented in4 , where also numerical examples are given.
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