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Geometric Fourier Analysis
of the Conformal Camera
for Active Vision∗

Jacek Turski†

Abstract. Suppose one intends to design an active vision system that should perform some artifi-
cial intelligence functions. For instance, it should recognize a planar object (or a three-
dimensional object containing a piece of a planar surface) in a dynamic scene. Ideally,
such a system should be built upon some data model representing visual inputs and al-
gorithms storing, processing, and analyzing visual information that are well adapted to
image transformations produced by different perspectives between planar objects and the
imaging system. In spite of its importance, this problem remained unsolved until recently.
In this article, building on the author’s work, projective Fourier analysis for patterns is
constructed in the framework of geometric Fourier analysis on groups and homogeneous
spaces. It is done by identifying in the conformal camera the group SL(2,C), which gives
image projective transformations by acting through linear-fractional mappings on the im-
age plane—homogeneous under the group action. This analysis is being implemented in
perspectively adapted digital image processing, and its basic components are tested for bi-
nary images in computer simulations. It is recognized that the data model of digital image
representation developed in the article is explicitly designed for foveated sensors, the use
of which in active vision systems is presently limited due to the lack of such a data model.
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1. Introduction. A long-standing goal in imaging science is to develop image
representation and efficient algorithms for storing, processing, and rendering visual
information that are well adapted to the types of geometric transformations dictated
by a problem at hand. These developments can be categorized into two distinct,
although interrelated, groups. One group is based on the geometric approach, and
the other on the imaging approach. The geometric approach begins with the rep-
resentation of shapes of objects in terms of geometrical primitives (mathematical
abstractions), such as lines, polygons, splines, and spheres; theorems from analytical
geometry (Euclidean, affine, or projective) are of paramount importance [31, 32, 39].
The imaging approach, on the other hand, deals with the image data given or ex-
tracted in terms of arrays of numbers—discrete samples of pixels—frequently coming
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from nongeometrical sources such as magnetic resonance imaging recordings. Here
the harmonic analysis with Fourier, Gabor, or wavelet theories and the sampling
theorem are of paramount importance [1, 6, 11, 13, 28, 29]. Also see [10] for the
newest innovations in computational harmonic analysis, especially promising in nat-
ural scene statistics (NSS) research. The geometric approach is more common for
problems in computer vision (robotics and industrial inspections, for example) and
computer graphics (image-based modeling and rendering and visual art, for exam-
ple), while the imaging approach is more common for problems such as resilient
watermarking, content-based image retrieval, and modeling primate visual systems
in neuroscience (retinocortical image transformation and cortical image coding and
analyzing).

An active vision system consisting of a moving camera head coupled with a hard-
ware image processor and linked to the computer performing image analysis should
be built upon the data model representing visual inputs and efficient algorithms pro-
cessing and analyzing visual information that is well adapted to image projective
transformations produced by different perspectives between objects and the camera.
A substantial amount of work done on the construction of an active vision system
(the one we have described above or with more specialized functions) using the geo-
metrical approach has not been successful so far. A more general discussion in [30]
on whether mathematical theories of shape could provide the right approach to ac-
tive vision problems yielded a pessimistic outcome. The imaging approach, on the
other hand, that deals with the data model (analog or digital) of image representation
based on harmonic analysis, although more promising, suffers from the lack of projec-
tive covariance. It is well known that all the theories of harmonic analysis mentioned
above are not well adapted to image perspective transformations. For example, one
can efficiently reconstruct a pattern that is rotated and translated in an image plane
using only one Fourier transform of the original pattern; but when perspective trans-
formations are applied, this is no longer feasible. These facts can be understood if one
realizes that the Fourier, Fourier–Mellin, wavelet, and Gabor transforms are built on
Euclidean, similarities, affine, and Weyl–Heisenberg (sub)groups of transformations,
respectively. Thus, one should look for an extension of the transforms that could
be built on some projective group. This leads naturally to the subject of Lie group
representations, and in particular to geometric Fourier analysis.

A substantial amount of work has been done to develop image representations
along the lines of Lie group theory that provide invariant and/or covariant descriptions
under image transformations by the important Lie groups of rigid motions, similarities,
and some projected motion groups; see, for example, [2, 4, 14, 16, 17, 38]. However,
only recently, the data model of the digital image representation based on projective
Fourier analysis for patterns (i.e., planar objects) constructed in the framework of
Lie group representations has been developed in a series of papers [41, 42, 43, 45].
Especially promising in this development is the fact that projective Fourier analysis
provides the data model for digital image representation that is explicitly designed
for the foveated architecture of silicon retina sensors used in some cameras (see [46]
on the SIAM-MI03 conference in Toronto), the use of which in active vision systems
is presently limited due to the lack of such a model [48].

The main idea of the theory of group representations in their relation to geometric
Fourier analysis is to decompose a function space on a group, or on a set on which
the group acts naturally, in terms of the simplest homomorphisms of the group, into
the set of unitary linear operators on a Hilbert space, called irreducible unitary repre-
sentations. In this framework, the generalized Fourier transform plays the same role
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on any group as the classical Fourier transform on the additive group of real num-
bers, where the irreducible unitary representations are homomorphisms between the
additive group and the multiplicative group of complex numbers of modulus 1 (the
circle group), given by the complex exponential functions one finds in the definition of
the standard Fourier integral. Since group theory is rooted in large part in geometry
through Klein’s Erlanger program of studying spaces through their groups of motions,
this geometric Fourier analysis emphasizes from the very beginning the covariance,
with respect to the geometric transformations, of the decompositions.

In this article, building on the author’s previous work, we discuss projective
Fourier analysis in a carefully laid framework of geometric Fourier analysis: given
geometric action of the group G on the space X (in our work, the projective group
G acting on the image plane), decompose some natural unitary representations T
of G on the Hilbert space L2(X) of square-integrable functions on X (patterns of
finite energy) into their irreducible constituencies present in this space. Then we
develop digital image processing based on projective Fourier decomposition of pat-
terns and numerically test its basic components for binary images. Although it has
been said (see the comments in section 7 of [19]) that there is no royal road through
contemporary (semisimple) harmonic analysis, including infinite-dimensional repre-
sentation theory, the exposition given here is intended for a broad audience, includ-
ing scientists working in computer vision, computer graphics, image processing, and
computational neuroscience. Therefore, we give all necessary definitions, illustrating
examples, and explicit calculations, as well as stressing motivations and nontechnical
explanations.

The article is organized as follows: In the next section, after we introduce basic
facts of representation theory, the above-mentioned geometric Fourier analysis on
L2(X) is more precisely formulated. Then, in section 3, we work out two examples
related to the group of Euclidean geometry, to illustrate the mathematical framework
of geometric Fourier analysis.

In section 4 we introduce the projective camera model for patterns. The group
SL(2,C) of 2 × 2 complex matrices of determinant 1, identified in this camera, acts
by linear-fractional (conformal) mappings on the image plane homogeneous under the
group action, giving image projective transformations. We also mention the camera’s
conformal lens optics, which is caused by the way rotations are generated. Having
identified the projective group SL(2,C), in the next section we discuss Gauss and Iwa-
sawa decompositions of SL(2,C) and give the corresponding integral formulas, which
are used in section 6 to obtain the irreducible unitary representations in the L2-space
in the so-called noncompact picture of induced representation. These representations
provide the building blocks in the construction given in section 7 of geometric Fourier
analysis on the image plane, homogeneous under the group SL(2,C). It consists of the
projective Fourier transform (PFT), its inverse, and the Plancherel theorem. Section
8 discusses the derivation of the discrete projective Fourier transform (DPFT) and its
inverse from the corresponding continuous transforms, stressing numerical aspects.

Next, in section 9, we develop the analytical foundations of the digital image
processing based upon DPFT. Since DPFT has the form of the standard discrete
Fourier transform in log-polar coordinates, it can be computed by a two-dimensional
fast Fourier transform (FFT). Accordingly, we discuss the sampling interface: the
procedure under which a uniformly sampled image is resampled with a log-polar
sampling—a nonuniform scheme of sampling—and again becomes uniform by being
expressed in the log-polar coordinate plane. The projective Fourier representation of a
digital pattern allows one to render its image projective transformations by computing
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only the DPFT of the original pattern. However, conformal distortions caused by the
conformal lens optics of the camera must be removed from image projective trans-
formations in order to display image perspective transformations. We address this
problem, which is referred to as the deconformalization problem, in this section as
well. We conclude this section by recognizing that the DPFT provides the right com-
putational framework for developing elegant image processing tools explicitly designed
for the foveated, or space-variant, architecture of silicon retina sensors. Finally, in
section 10 we carry out computer simulations to test the projective covariance of the
image representation for binary digital images.

Fourier analysis on homogeneous spaces, and on symmetric spaces in particular,
based on geometric ideas was originated by Gelfand’s school and by Harish-Chandra,
and further developed by Helgason [20, 21]. Although we work with geometric Fourier
analysis of SL(2,C), that is, harmonic analysis for the simplest noncompact semisim-
ple complex Lie group (developed by Gelfand’s school [15]), it is preferable to present
the basic methods of representation theory and harmonic analysis in the more general
context of semisimple Lie groups (Harish-Chandra’s approach). For the definition of
a semisimple Lie group in the context used in this work, we refer to [24], where an
elementary account of Harish-Chandra’s fundamental (but very technical) work in
the field of representation theory is also given. A good introduction to the field of
representation theory of semisimple Lie groups can be found in [27]. Nontechnical
expositions on the connection between group representations and geometric Fourier
analysis were given in [19, 35]. The former includes a historical perspective, and the
latter, a detailed discussion of the SL(2,C) case. Special cases of geometric Fourier
analysis on the two-dimensional sphere S2, the symmetric space of the rotation group
SO(3), and non-Euclidean analogs of Fourier series and integrals with many applica-
tions, were discussed in [40].

Finally, we mention that the presentation of projective Fourier analysis given in
sections 2–8 of this article is an expanded version of a seminar given by the author in
June 2001 at City University of Hong Kong [44].

2. Basic Facts of Representation Theory. We shall mostly be concerned with
groups G, which are matrix Lie groups, that is, closed subgroups of the groups of
invertible n×n matrices with real or complex entries. A manifold X is a transforma-
tion space for a group G if there is a continuous action G ×X → X, (g, x) �→ g · x
such that g · (h · x) = (gh) · x and e · x = x for all x ∈ X and g, h ∈ G, where e is the
identity element of G. We shall assume that the action is transitive, which means that
given x, y ∈ X, there is a g ∈ G such that y = g · x. In this case the space X is called
a homogeneous space. A transformation space X for G is a homogeneous space if and
only if X is isomorphic to G/H, where H is the isotropy group Gx = {g | g · x = x}
of any designated point x ∈ X.

A representation of a group G on a vector space H, usually assumed complex, is
a homomorphism T : G→ GL(H) from G to the space GL(H) of invertible linear
operators on H, that is, T (gh) = T (g)T (h) and T (g−1) = T −1(g) for all g, h ∈ G.
Therefore, if H is a topological vector space, a representation T is obtained from the
action (g, v) �→ T (g)v that is linear in v. Although we consider only the matrix Lie
groups, it does not mean that the vector space on which the representation of G acts
is finite-dimensional. If the vector space H has a finite dimension, the degree of the
representation T is the dimension of the vector space H. Otherwise, we say that T
is an infinite-dimensional representation. A representation is said to be unitary if H
is a Hilbert space with an inner product 〈v, u〉, and each T (g) is a unitary operator
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in H; that is, the inner product is invariant,

〈T (g)v, T (g)u〉 = 〈v, u〉,

for all g ∈ G and v, u ∈ H. Because we are working with geometric Fourier analysis,
we shall present the basic facts for unitary representations only.

IfH is a Hilbert space, a representation is a homomorphism T : G→ BL(H) from
G to the space of linear operators on H with bounded inverses, such that the resulting
map G ×H → H is continuous. To have this continuity for unitary representations
it is enough to assume that the function g → 〈T (g)v, v〉 is continuous at g = e for all
v ∈ H.

A representation T1 of G on H1 is said to be equivalent to a representation T2 on
H2 if there exists a bounded isomorphism S : H1 → H2 such that ST1(g) = T2(g)S for
all g ∈ G. In addition, if S : H1 → H2 is a unitary isomorphism, the representations
are unitarily equivalent. We regard equivalent representations as being essentially the
same.

A representation can be restricted to a closed subgroup, or different represen-
tations can be combined, to yield the new representations. An important example,
when two representations are combined, is the case of the direct sum. Let two repre-
sentations of G, T1 on H1 and T2 on H2, be given. If H1 ⊕H2 is the direct sum of
the Hilbert spaces, that is, it consists of all vectors (v1, v2) ∈ H1×H2 with the scalar
product being componentwise,

〈(v1, v2), (w1, w2)〉H1⊕H2 = 〈v1, w1〉H1 + 〈v2, w2〉H2 ,

then the direct sum representation T1 ⊕ T2 of G on H1 ⊕H2 is defined as follows:

v1 ⊕ v2 �→ T1 ⊕ T2(g)(v1, v2) = (T1(g)v1, T2(g)v2) .

Let T be a representation of G on a Hilbert space H. A closed subspace W ⊂ H
is said to be invariant (with respect to T ) if T (g)W ⊂ W for all g ∈ G. In this case,
the representation T reduces to a subrepresentation of G on W.

Every representation has at least two trivial subrepresentations, namely, when
W = {0} and W = H. A reducible representation is one that contains a nontrivial
subrepresentation; an irreducible representation, then, is one that has no nontrivial
subrepresentations.

When a representation T of G on H is reducible, with a closed invariant subspace
W , we can ask whether we can find an invariant subspace W ′ such that H = W ⊕
W ′. In general it cannot be done. However, if the representation T is unitary,
the invariance of the inner product 〈T (g)v1, T (g)v2〉 = 〈v1, v2〉 for all g ∈ G and
v1, v2 ∈ H implies that W is invariant if and only if

W⊥ = {v ∈ H | 〈v, u〉 = 0 for all u ∈W}

is invariant, and H = W ⊕W⊥. In particular, finite-dimensional unitary representa-
tions are always direct sums of irreducibles.

The following simple proposition, referred to as Schur’s lemma, often proves cru-
cial.
Proposition 1. If representations T1 and T2 of G on H1 and H2, respectively,

are finite-dimensional and irreducible, then any linear map F : H1 → H2 such that
F (T1(g)v) = T2(g)F (v) is either zero or an isomorphism. Furthermore, if H1 = H2,
then F = λId for some λ ∈ C.
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The proposition holds because the subspaces ker(F ) ⊂ H1, im(F ) ⊂ H2, and
(if H1 = H2) any eigenspace {v∈H | F (v) = λv} are all invariant subspaces and
consequently are either {0} or coincide with the entire space by the definition of
irreducibility.

The infinite-dimensional extension of the last proposition holds for the unitary
representations. This fundamental result in representation theory is also referred to
as (generalized) Schur’s lemma.
Theorem 2. Let T1 and T2 be unitary, irreducible representations of G on

H1 and H2, respectively. If S : H1 → H2 is a bounded linear operator such that
ST1(g) = T2(g)S for every g ∈ G, then either S is an isomorphism (i.e., T1 and T2
are equivalent: T2 ∼= T1 ⇐⇒ T2 (g) = ST 1 (g)S−1) or S = 0.

The last theorem implies the following criterion of irreducibility : a unitary rep-
resentation T of G on H is irreducible if and only if the only operators commuting
with all T (g) are scalar multiples of the identity.

Given a Lie group G of geometric transformations acting on a homogeneous space
X, there is a naturally induced representation T of G on the space F (X) of complex
functions F on X, the representation that maps F to the function Fg = T (g)F
defined by Fg(x) = F (g−1 · x). This representation on the (infinite-dimensional)
function space F will usually decompose into many important subrepresentations,
some of them finite dimensional.
Example 3. In this example a Lie group G is acting on itself by multiplications:

left multiplication g �→ hg, or right multiplication g �→ gh−1, both multiplications
by h ∈ G. The linear space here is H = L2(G, dlg) taken with respect to a left-
invariant (Haar) measure: dl(hg) = dlg for all h ∈ G. Then, L(h)f(g) = f(h−1g)
is the left regular representation of G. The right regular representation is given by
R(h)f(g) = f(gh) on L2(G, drg), where drg is a right-invariant (Haar) measure on
G; dr(gh) = drg. Both representations are unitary. We check this fact only for the
left regular representation, as the case of the right regular representation can be proved
along the same lines. To this end, we have

〈L(h)f1, L(h)f2〉 =
∫

G
L(h)f1(g)L(h)f2(g)dlg

=
∫

G
f1(h−1g)f2(h−1g)dlg.

Using the left invariance in this integral, we obtain

〈L(h)f1, L(h)f2〉 =
∫

G
f1(g)f2(g)dlg

= 〈f1, f2〉.

This shows that L(h) is unitary.
In this example the homogeneous space X of the group G is the group itself. The

constructions of the unitary representations involved the invariant (Haar) measures
dlg and drg with respect to which the invariant inner products of the corresponding
L2-spaces were constructed. Every Lie group carries both left- and right-invariant
measures dlg and drg. Although in general dlg and drg are different, they vanish
on the same null sets; that is, they are equivalent measures. Therefore, there is a
measurable function ∆G : G→R+ such that drg = ∆G(g)dlg. This function is called
the modular function of the group G. If ∆G = 1, the group is called unimodular.
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A homogeneous space X of the group G, on the other hand, need not carry any
measure invariant under the action of G on X. However, a quasi-invariant measure
dµ on X always exists, and this fact is enough to construct unitary representations
of G on L2(X, dµ). The measure dµ on the homogeneous space X of the group G is
said to be quasi-invariant if dµ(x) and dµ(g · x) are equivalent measures. In fact, the
mapping g �→ T (g) given by

(1) T (g)f(x) =

√
dµ(g−1 · x)
dµ(x)

f(g−1 · x)

provides a unitary representation T of G on L2(X, dµ).
Now, the basic problem of geometric Fourier analysis can be formulated as follows:

Given geometric action of G on X, find a G-equivariant isomorphism L2(X, dµ) ∼=
V̂ , where V̂ is a space built explicitly out of unitary irreducible representations in
L2(X, dµ), as a direct sum or possibly in some more general fashion. This “more
general fashion” will be explained in the examples given in the next section.

3. Fourier Analysis from the Euclidean Group. In this section we present two
examples of geometric Fourier analysis. The first is the classical Fourier analysis on
R
n, where Rn is taken to be the additive group. In the second example Fourier analysis

is formulated on the Euclidean space Rn (we take n = 2 to eliminate unnecessary
complications), the homogeneous space of the Euclidean group.

3.1. Classical Fourier Analysis. The Fourier transform F given by the integral

(Ff) (λ) = f̂(λ) =
∫
Rn

f(x)e−iλ·xdx,

where λ · y denotes the standard inner product on Rn, is first defined on L1 (Rn) ∩
L2 (Rn) and is then extended to an isometry on L2 (Rn) that satisfies the Plancherel
formula: ∫

Rn

|f(x)|2dx =
1

(2π)n

∫
Rn

|f̂(λ)|2dλ.

Its inverse Fourier transform F−1, given by(
F−1f̂

)
(x) = f(x) =

1
(2π)n

∫
Rn

f̂(λ)eiλ·xdλ,

provides the decomposition of functions in the L2 sense.
This classical harmonic analysis is in fact geometric Fourier analysis on the abelian

group G = R
n acting by translations on the Euclidean space Rn. The regular (uni-

tary) representation

(T (y) f) (x) = f(x− y), f ∈ L2 (Rn) ,

decomposes into (one-dimensional) irreducible unitary representations πλ(y) = eiλ·y.
Although all irreducibles must be one-dimensional since the group is abelian,

the Hilbert space L2 (Rn) does not contain one-dimensional invariant subspaces since
cπλ /∈ L2 (Rn). However, there is an invariant (Plancherel’s) measure on the set of
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equivalent classes of irreducible unitary representations R̂n, isomorphic to Rn (under
the correspondence πλ ↔ λ), namely, dρ(λ) = (1/ (2π)n) dλ. Writing

T ∼= T̂ = FT F−1 =
∫ ⊕

Rn

πλdρ(λ)

(T and T̂ = FT F−1 are equivalent representations since F is a unitary isomorphism)
and

L2 (Rn) =
∫ ⊕

Rn

Cπλdρ(λ),

we can think of them as a continuous direct sum, or direct integral of irreducible
representations πλ; see [19]. This can be made precise in the framework of the the-
ory of spectral decomposition of operators. However, it will not be needed in our
applications to image processing as we will work with the DPFT.

3.2. Euclidean Fourier Analysis. The Euclidean group E(2) = SO(2)�R2 is
the semidirect product of the group of rotations about the origin and the group of
translations. We identify E(2) with the group of matrices g =

(
eiϕ ξ
0 1

)
acting on

the quotient space X = E(2)/SO(2) ∼= R
2, which is regarded here as C, as follows:

g · z = eiϕz + ξ. For each real number s �= 0, Hs is the Hilbert space of functions
on C,

f(z) =
∫
S1
F (ω)eisRe(zω)dω, F (ω) ∈ L2(S1),

where dω is the invariant measure, and with the norm given by

||f || =
(∫

S1
|F (ω)|2dω

)1/2

.

The regular representations of E(2) on Hs, s > 0,

Ts(g)f(z) = f
(
g−1 · z

)
= f(e−iϕ(z − ξ)),

are all of the unequivalent infinite-dimensional unitary and irreducible representations
[20]. In order to derive the Euclidean Fourier transform, we first write the Fourier
transform Ff = f̂ in polar coordinates,

f̂(sω) =
i

2

∫
C

f(z)e−isRe(zω)dzdz, f ∈ L2 (C) ,

where if z = x+ iy, then (i/2)dzdz = dxdy. Next, for every f ∈ C∞c (C), we have

f(z) =
1
2π

∫
R+

∫
S1
f̂(sω)eisRe(zω)dωsds.

Then the regular representation of E(2) on L2 (C), T (g)f(z) = f(g−1 ·z), has the
spectral decomposition into irreducibles

T ∼= T̂ = FT F−1 =
∫ ⊕

R+

Tssds
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and

L2 (C) =
∫ ⊕

R+

Hssds.

Finally, writing ω = eiφ and z = reiθ and using elementary properties of the
classical Fourier transform, any f ∈ L2 (C) has the Euclidean Fourier decomposition
in terms of Bessel functions Jn:

f(z) =
1
2π

n=∞∑
n=−∞

∫
R+

f̂(n, s)
(
z

|z|

)n
Jn(s|z|)sds,

with the coefficients of the decomposition given by the Euclidean Fourier transform

f̂(n, s) =
i

2

∫
C

f(z)
(
z

|z|

)−n
Jn(s|z|)dzdz,

where Jn(sr) are defined by the Bessel function of order n,

Jn(z) =
1
2π

∫ 2π

0
eiz sinφ−inφdφ.

4. Geometry of the Camera Model. A detailed discussion of the conformal
(projective) camera was given in [43]. In section 2.1 of that reference, we carefully
explained how the image projective transformations are generated in the camera model
(Figure 1 in [43]), and in section 6 we discussed the “conformal lens optics” of the
camera and demonstrated some topological effects, artificial from the point of view of
the image perspective transformations.

4.1. The Projective Camera. The camera has the pinhole located at the origin
and the image plane consisting of points (x1, 1, x3) identified with complex numbers
x3 + ix1. Thus, the image of an object is obtained by projecting the object points
into the image plane by

j(x1, x2, x3) =
x3 + ix1

x2
.

The camera is embedded into the complex plane

C
2 =

{(
z1
z2

)
| z1 = x2 + iy, z2 = x3 + ix1

}
such that the points of the image plane are the points where the complex lines z2 = ξz1
intersect the line z1 = 1. The action of the group SL(2,C) on nonzero column vectors
in C2 induces the action on the “slopes” of lines z2 = ξz1 by the following linear-
fractional transformations:

(2) ξ �−→
(
a b
c d

)
· ξ =

dξ + c

bξ + a
.

Therefore, the image plane can be regarded as the extended complex line Ĉ = C∪{∞},
where j(x1, 0, x3) =∞.
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We point out again that (2) transforms the slopes of the complex lines, that is,
complex “directions,” which will be explained in the next section in terms of basic
transformations: translations, dilations, and rotations. As the slopes ξ = ξ3 + iξ1 are
identified with the image plane points x3 + ix1 for x2 + iy = 1, the transformation
under SL(2,C) of complex lines in C2 induces projective transformations (2) of the
points on the image plane. We note that the complex line x3+ix1 = (ξ3+iξ1)(x2+iy)
with y = 0 corresponds to the line in R3, x1

x2
x3

 =

 ξ1
1
ξ3

 t, t ∈ R,

passing through the origin (the ray passing through the pinhole) and intersecting the
image plane x2 = 1 at the point (ξ1, 1, ξ3).

4.2. Image Projective Transformations. The following subgroups of SL(2,C)
acting on the image plane by (2) give all basic classes of the image projective trans-
formations of planar objects or patterns:

(1) The maximal compact subgroup

(3) SU(2) =
{(

α β

−β α

) ∣∣∣∣ |α|2 + |β|2 = 1
}

generates image projective transformations (with conformal distortions) by first ro-
tating the projection in the camera of an image on S2

(0,1,0) and then projecting it
back to the image plane. This follows from the fact that there is one-to-two corre-
spondence between the group of rotations SO(3) and SU(2)—the universal double
covering group of SO(3) [8]. If the rotation R(ψ, φ, ψ′) ∈ SO(3) is parametrized by
Euler angles, then α and β in (3) are given by

α = ± cos (φ/2) ei(ψ+ψ′)/2, β = ±i sin (φ/2) ei(ψ−ψ
′)/2;

see [8, 41]. Here the Euler angles are chosen such that ψ rotates about the x2-axis,
followed by the rotation φ about the x′3-axis that is parallel to the x3-axis and passing
through the sphere center (0, 1, 0), and finally by the rotation ψ′ about the rotated
x2-axis. Thus the torus M = {

(
eiψ 0

0 e−iψ

)
} ⊂ SU(2) describes rotations in the image

plane.
(2) The subgroup

(4) A =
{(

ρ 0
0 ρ−1

) ∣∣∣∣ ρ > 0
}

represents transformations (dilations by 1/ρ2) obtained by translating the image with
respect to the optical axis of the camera and projecting it back to the image plane.

(3) Finally, the subgroup

(5) N =
{(

1 0
γ 1

) ∣∣∣∣ γ ∈ C}
represents translations by γ in the image plane.

The group of image projective transformations is generated in the camera model
by taking all finite iterations of the basic transformations induced by the groups
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SU(2), A, and N. It follows from the polar decomposition SL(2,C) = SU(2)ASU(2)
(see [27]) that this group is the group SL(2,C). This group is acting on the complex
image plane by linear-fractional mappings (2).

The projective camera possesses the “conformal lens optics” because the linear-
fractional transformations in (2) are conformal mappings; that is, they preserve angles;
see [33]. Therefore, this camera is called the conformal camera. We refer to the
procedure of correcting image projective transformations for conformal distortions as
deconformalization of image projective transformations. We note that the conformal
lens problem of the projective camera is similar to the problem of the absence of
optical lenses in a pinhole camera; see the appendix in [31].

4.3. Geometry of the Image Plane. Geometry of the image plane Ĉ, homoge-
neous under the action of SL(2,C)/{±I} by linear-fractional transformations, can be
dually described as follows:

(1) Ĉ is the complex projective line, i.e., Ĉ ∼= P 1 (C), where

P 1 (C) =
{
complex lines in C2 through the origin

}
with the group of projective transformations PSL(2,C) = SL(2,C)/{±I}. Thus,
the image projective transformations acting on the points of the image plane of the
conformal camera can be identified with projective geometry of the one-dimensional
complex line [9].

(2) Ĉ is the Riemann sphere since under stereographic projection σ = j|S2
(0,1,0)

we
have the isomorphism Ĉ ∼= S2

(0,1,0). The group PSL(2,C) acting on Ĉ consists of the
bijective meromorphic mappings of Ĉ [26], that is, the group of automorphisms of the
Riemann sphere that preserve the intrinsic geometry imposed by complex structure,
known as Möbius geometry [22] or inversive geometry [7].

4.4. The Relation of the Conformal Camera to Other Camera Models. The
commonly used camera models in machine vision can be classified into calibrated and
uncalibrated, with the different types of cameras in each category. The projective
camera is the most general camera. It projects the points of space on an image plane.
This projection can be written as a 3×4 real matrix in the corresponding homogeneous
coordinates in space and in the image plane. Since scale is arbitrary for homogeneous
coordinates and the mapping places no restrictions on the coordinates, it is called an
uncalibrated camera. The other less general uncalibrated camera is the affine camera.
It is a projective camera with the center of projection on the plane at infinity, which
means that all projecting rays are parallel. The camera results in the composed effect
of affine transformation between the space coordinates and the camera coordinates,
parallel projection onto the image plane, and affine transformations of the image plane
coordinates, given by the corresponding 3× 4 real matrices.

Calibrated cameras are obtained by specifying camera parameters such as the
focal length (the distance of the pinhole from the image plane) or the principal point,
the point on the image plane at which the optical axis intersects the image plane. The
most general calibrated camera is the perspective camera. This model uses central,
that is, perspective, projections, reducing description to a pinhole camera with the
optical axis perpendicular to the image plane and with coordinate systems related by
Euclidean transformations. It again involves the corresponding 3 × 4 real matrices.
Further restrictions result in less general cameras such as the weak perspective (the
depth variation of objects along the viewing line is small compared with the viewing
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distance) or the orthographic camera (orthographic projections). The classification
of cameras with the corresponding matrices is given in [39].

The set of 3 × 4 matrices describing a particular camera does not form a group,
which is a major obstacle in developing a group-theoretical approach to image repre-
sentation that is well adapted to the image transformations produced by the camera.
On the other hand, the conformal camera is characterized by the image projective
transformations given by the action of the group SL(2,C) on the points of the im-
age plane. Further, the group SL(2,C) has a well-understood Fourier analysis on it,
which can provide the sophisticated framework of computational harmonic analysis
to develop a data model for image representation well adapted to the projective im-
age transformations. Thus, as the cameras are used in computer vision research to
extract geometric information (for example, projective invariants) from scenes, the
conformal camera is mainly used to construct an efficient computational framework
for projectively covariant image representation. Another way of expressing it is to say
that the cameras used in computer vision research belong to the geometric approach
to image representation and rendering, while the conformal camera belongs to the
imaging approach (see section 1).

Although the conformal camera is central to the development of the projective
Fourier analysis later in the article, it is somewhat less intuitive than a pinhole camera
commonly used in machine vision research. It could be the result of the way some
of the projective deformations are generated by projecting an image from the image
plane into the sphere, rotating the sphere, and then projecting the image back to
the image plane. A quick look at the biological visual system should be useful in
understanding that vision is too complicated a process for a pinhole camera to support.
If we closely examine the human visual system, we realize that the retina of the eye
(the camera with almost spherical image surface) does not “see”; rather, it contains
photoreceptors (rod and cone cells) with chemicals that release energy when struck by
light. The nervous system sends the retinal image (variations in released energy) to
the primary visual cortex, an area in the visual cortex at the back of the brain. The
brain processes visual information by sending it to many different visual areas (the
exact function of which is not yet understood) and “sees” the image [25]. Certainly,
the result of the human visual system is experimental evidence for an eye-centered
spherical representation of the transformation from visual to motor coordinates [47].

5. The Group SL(2,C). Before we construct geometric Fourier analysis of the
conformal camera, we need some analytical results for the group SL(2,C).

5.1. Gauss Decomposition. For each element g =
(
α β
γ δ

)
∈ SL(2,C), we have

one of the two cases: α �= 0 or α = 0.
(1) If α �= 0, then we can write

g =
(

1 0
γ/α 1

)(
α β
0 α−1

)

=
(

1 0
γ/α 1

) α
|α| 0

0
(

α
|α|

)−1

( |α| 0
0 |α|−1

)(
1 β/α
0 1

)
,

where we used αδ − βγ = 1.
(2) If α = 0, then

g =
(

0 1
−1 0

)(
β−1 −δ
0 β

)
.
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We conclude that for any g ∈ SL(2,C) either g ∈ NB or g ∈ pB, where B = MAN
is the Bore subgroup and p =

( 0 1
−1 0

)
. Thus, we have the decomposition

(6) SL(2,C) = NB∪pB,

which implies Gauss decomposition

(7) SL(2,C) .= NMAN,

where “ .=” means that equality holds except in a lower-dimensional subset pB of the
invariant measure 0, that is, almost everywhere on SL(2,C). Furthermore, the map

N×M×A×N→ SL(2,C), (n,m, a, n) �→ nman

is a diffeomorphism. If g factors under SL(2,C) .= NMAN, then g = n(g)m(g)a(g)n.

5.2. Iwasawa Decomposition. For a given g =
(
α β
γ δ

)
∈ SL(2,C) we want

to write g = kan with k ∈ SU(2), a ∈ A, and n ∈ N. In explicit terms this
decomposition is given as follows:

g =

 α√
|α|2+|γ|2

−γ√
|α|2+|γ|2

γ√
|α|2+|γ|2

α√
|α|2+|γ|2

(√|α|2 + |γ|2 0
0 1/

√
|α|2 + |γ|2

)(
1 αβ+γδ

|α|2+|γ|2
0 1

)
,

which also shows its uniqueness. Further, we see from the above decomposition that
the multiplication map

SU(2)×A×N→ SL(2,C), (k, a, n) �→ kan

is a diffeomorphism onto.
The decomposition

(8) SL(2,C) = SU(2)AN

is called the Iwasawa decomposition of SL(2,C). If g ∈ SL(2,C) decomposes under
SU(2)AN, we write g = k(g)a′(g)n.

5.3. Integral Formulas. The group SL(2,C) is unimodular and its invariant
measure is the following: if g =

(
α β
γ δ

)
∈ SL(2,C), then dg = (1/|δ|2)dβdβdγdγdδdδ.

Recall that if β = β1+iβ2, then (i/2)dβdβ = dβ1dβ2. This is not defined on the set of
measure 0 where δ = 0. The Borel subgroup B ⊂ SL(2,C) is not unimodular. In fact,
if b =

(
α β

0 α−1

)
∈ B, a left-invariant measure on B is dlb = (i/2)2(1/|α|4)dαdαdβdβ

and a right-invariant measure is given by drb = |α|4dlb. Thus the modular function
on B is ∆B(

(
α β

0 α−1

)
) = |α|4.

The decompositions of SL(2,C) discussed above lead to three important formulas
that relate some invariant measures. They are corollaries of the following more general
results from geometric analysis [27].
Theorem 4. Let G be a unimodular Lie group and S and P be closed subgroups

such that S∩P is compact and the set of products SP exhausts G except possibly for
a set of invariant measure 0, that is, G .= SP. Then the left-invariant measures dls
and dlp on S and P, respectively, can be normalized so that∫

G
f(g)dg =

∫
S×P

f(sp)∆P(p)dlsdlp =
∫

S×P
f(sp)dlsdrp.
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Corollary 5. (1) If SL(2,C) = SU(2)AN, then dg = dkdr(an).
(2) If SL(2,C) = SU(2)MAN, then dg = dkdr(man).
(3) If SL(2,C) .= NMAN, then dg = dndr(man).
Remark 6. It follows from Iwasawa decomposition that SL(2,C)/B = SU(2)/M,

and hence, isomorphic to both S2 and P 1 (C). Since SL(2,C) is unimodular and B
is not, the invariant measure on SL(2,C)/B ∼= P 1 (C) ∼= Ĉ does not exist. How-
ever, the Lebesgue measure dµ(z) = i

2dzdz on Ĉ is quasi-invariant and dµ
(
g−1 · z

)
=

| − bz + d|−4dµ(z), where g =
(
α β
γ δ

)
∈ SL(2,C). Thus, the unitary representation

(1) on the homogeneous space SL(2,C)/B involves the factor√
dµ (g−1 · z)
dµ(z)

= | − βz + δ|−2,

which will appear in the principal series representations of SL(2,C).

6. Inducing Representations of the Principal Series of SL(2,C). Every repre-
sentation T of a Lie group G on a Hilbert space H defines a representation of a closed
subgroup H ⊂ G on H by restricting T to H. Inducing representations is inverse to
restricting; a representation of a Lie group G is constructed from a representation of
a subgroup H. For many important Lie groups, inducing representations is a funda-
mental method of obtaining all irreducible unitary representations of G that supply
the building blocks of Fourier analysis on G or its homogeneous spaces.

To describe the method of inducing representations, we let K be a closed subgroup
of a Lie group G, both assumed to be unimodular with the invariant measures dk and
dg, respectively. Further, assume that G = KP with a closed subgroup P, such that
the map (k, p) �→ kp of K×P→ G is a bijection. Then G/P ∼= K is a homogeneous
space on which G operates on the left.

Let Π be a representation of P on a Hilbert space H. Further, let HΠ be
the space of continuous mappings F : G→H satisfying the condition F (gp) =
∆P(p)−1/2Π(p)−1F (g), where ∆P is the modular function on P. The decomposi-
tion G = KP shows that F is determined by its restriction to K and we can define
the norm of F by

(9) ||F ||2 =
∫

K
|F (k)|2dk.

Then the representation UΠ of G on HΠ is given by the left action UΠ(g)F (x) =
F (g−1x). The actual representation UΠ and the Hilbert space is obtained by com-
pletion in the norm (9). UΠ is called the induced representation of Π to G. The
basic result is the following: if the representation Π is unitary, then the induced
representation UΠ is unitary.

The group SL(2,C) admits the Iwasawa decomposition SL(2,C) = SU(2)B,
where the Borel subgroup B has the form B = MAN, where N is normal in B. The
unitary representations of SL(2,C), all of which are infinite-dimensional, are induced
from the one-dimensional unitary representations of B.

To this end, we first describe all finite irreducible unitary representations of B.
Let Π be any irreducible unitary representation of MA on the Hilbert space C. Since
N is normal in B, we can extend Π to B by Π(dn) = Π(d), d ∈MA, n ∈ N. See [24]
for an explicit demonstration of this fact. Let b =

(
α β

0 α−1

)
∈ B; then the unitary
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representation Πs,k(b), k ∈ Z, s ∈ R, acts on C by

Πs,k(b)z = |α|is
(
α

|α|

)k
z.

These one-dimensional unitary representations are all of the finite irreducible unitary
representations of the Borel subgroup B; see [35]. Finally, recalling that the mod-
ular function on B is ∆B(b) = |α|4, we conclude that the space HΠ of the induced
representations is given by

(10) HΠ =

{
F ∈ C(SL(2,C)) | F (gman) = |α|−is−2

(
α

|α|

)−l
F (g)

}

with the norm

(11) ||F ||2 =
∫

SU(2)
|F (k)|2dk.

The induced unitary representation of SL(2,C) is then obtained from T Π(g)F (x) =
F (g−1x) by completing it in the norm (11).

It follows from the Gauss decomposition SL(2,C) .= NB that the restriction of(
T Π(g), HΠ

)
to N ∼= C is one-to-one. Under this restriction, the resulting dense

subspace is

(12) HΠ =

{
F ∈ C

(
N
)
| F (nman) = |α|−is−2

(
α

|α|

)−l
F (n)

}

and the action of the representation, called the principal series of SL(2,C), is ob-
tained, using calculations done for the Gauss decomposition, as follows:

T Π(g)F (n) = F
(
g−1n

)
= F

(
n
(
g−1n

)
m
(
g−1n

)
a
(
g−1n

)
n
)

= | − βz + δ|−is−2
(
−βz + δ

| − βz + δ|

)−k
F

((
1 0

αz−γ
−βz+δ 1

))
,(13)

where the norms of L2(SU(2),dk) and L2(N,dn) are preserved under the restriction;
that is, ∫

SU(2)
|F (k)|2dk =

∫
N
|F (n)|2dn.

This restriction of the induced representations is called in representation the-
ory the noncompact picture of induced representation and is particularly useful for
studying the induced representations by analytic methods [27].

7. Geometric Fourier Analysis for Patterns. Projective Fourier analysis for
patterns is constructed using the noncompact picture of induced representation. We
start by noticing that for each F ∈ HΠ,

F (gman) = |α|−is−2
(
α

|α|

)−l
F (g).
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Therefore, F (g) must be N-invariant, and consequently, it can be written as a function
on C2\{0} (also denoted by F ):

F

((
z1
z2

))
= F

((
z1 β
z2 δ

)(
1
0

))
, g =

(
z1 β
z2 δ

)
∈ SL(2,C).

(In the group-theoretic formalism (see section 2), the group N is the isotropy group of(1
0

)
∈ C2\{0}, implying that C2\{0} is isomorphic to the homogeneous space G/N.)
We verify that F ∈ HΠ(s,k) if and only if

F

((
λz1
λz2

))
= λmλ

n
F

((
z1
z2

))
= |λ|is−2

(
λ

|λ|

)k
F

((
z1
z2

))
,

where m = (1/2) (k + is)− 1 and m = (1/2) (−k + is)− 1. Moreover,

F

((
z1
z2

))
= |z1|is−2

(
z1

|z1|

)k
F

((
1
z2
z1

))
= |z1|is−2

(
z1

|z1|

)k
Φ
(
z2

z1

)
,

where Φ (z) = F
(1
z

)
. At this point we are dealing with homogeneous functions F on

C
2\{0}, the space of functions on which the irreducible representations of SL(2,C)

were originally constructed in [15]. We note that from (13) it follows that

T Π(s,k)Φ (z) = | − βz + δ|−is−2
(
−βz + δ

| − βz + δ|

)−k
Φ
(
αz − γ
−βz + δ

)
,

which extends to the principal series representation of SL(2,C) on L2 (C) [15, 27].
See Remark 6 in section 5.3 for the origin of the factor | − βz + δ|−2 present in the
principal series representation.

For a given pattern’s intensity function f(z) we place it on the image plane z1 = 1
of the conformal camera by writing h

((1
z

))
≡ f(z), and we extend to C2 along the

complex lines as follows: h(
(
ξ
ξz

)
) = |ξ|−1f(ξz). First we note that the action of

SL(2,C) on h given by h(g−1
(
z1
z2

)
) induces the projective transformation f(g−1 · z) of

the pattern f [41]. Then we define functions

F

((
z1
z2

))
=

i

2

∫
h

((
µz1
µz2

))
|µ|−is

(
µ

|µ|

)−k
dµdµ

and verify that F is in the representation space HΠ. We denote the restriction of this
F to the image plane by Φ(z; k, s) and express it in terms of the pattern’s intensity
function f(z),

Φ(z; k, s) =
i

2

∫
f(µz)|µ|−is−1

(
µ

|µ|

)−k
dµdµ.

Changing variable ξ = µz yields Φ(z; k, s) = |z|is−1( z
|z| )

kf̂(s, k), where

(14) f̂(s, k) =
i

2

∫
f(ξ)|ξ|−is−1

(
ξ

|ξ|

)−k
dξdξ

is the projective Fourier transform (PFT) of the pattern f . In log-polar coordinates
(u, θ) given by ξ = eu+iθ, f̂(k, s) has the form of the standard Fourier integral, given
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in the next section by (16). Inverting it (see [41]), we get the inverse projective Fourier
transform

(15) f(z) =
1

(2π)2

∞∑
k=−∞

∫
f̂(s, k)|z|is−1

(
z

|z|

)k
ds.

Also, the usual Plancherel’s theorem gives the following projective counterpart of it:

i

2

∫
|f(z)|2dzdz =

1
(2π)2

∞∑
k=−∞

∫
|f̂(s, k)|2ds.

We see that the inverse projective Fourier transform provides decomposition in terms
of the characters |z|is( z

|z| )
k of the Borel subgroup B ⊂ SL(2,C) with the coefficients

given by the projective Fourier transform. We note that the Gauss decomposition
SL(2,C) .= NB implies that B exhausts the “projective” part of SL(2,C) as N ∼= C
represents translations in the image plane. It should be seen in light of the fact that all
unitary representations of the group SL(2,C) are infinite-dimensional [15], as opposed
to the fact we have mentioned before that all finite-dimensional irreducible unitary
representations of the Borel group B are in fact one-dimensional.

8. The Discrete Projective Fourier Transform. In log-polar coordinates (u, θ)
given by z = eueiθ, PFT in (14) has the standard Fourier integral form

(16) f̂(s, k) =
∫ 2π/L

0

∫ ln rb

ln ra
g(u, θ)e−i(us+θk)dudθ = g̃ (s, k) ,

where the support of g(u, θ) = euf(eu+iθ) is assumed to be within [ln ra, ln rb]×
[0, 2π/L] with L ∈ N. Also, g̃ denotes here the standard Fourier transform of g.
Hence, extending g(u, θ) periodically g(u+mT, θ+2πn/L) = g(u, θ) where T = ln rb

ra
,

it can be expanded in a double Fourier series [42],

(17) g(u, θ) =
L

2πT

∞∑
m=−∞

∞∑
n=−∞

f̂

(
2πm
T

, nL

)
ei(2πmu/T+nLθ),

where

g̃

(
2πm
T

, nL

)
= f̂

(
2πm
T

, nL

)
=
∫ 2π/L

0

∫ ln rb

ln ra
g(u, θ)e−i(2πmu/T+nLθ)dudθ.(18)

An efficient computation of the PFT f̂ must involve only a finite number of alge-
braic operations performed on a finite set of data. To this end, assuming that

(19) supp g̃ = supp f̂ ⊂ [−Ω,Ω]× [−Γ,Γ]

and approximating the integral in (18) by a double Riemann sum withM×N partition
points (uk, θl) = (ln ra + kT/M, 2πl/LN), 0 ≤ k ≤M − 1, 0 ≤ l ≤ N − 1, we obtain

f̂

(
2πm
T

, nL

)
≈ 2πT
LNM

M−1∑
k=0

N−1∑
l=0

g(uk, θl)e−2πi(mk/M+nl/N),

where |m| ≤ ΩT/2π and |n| ≤ Γ/L.
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For this procedure to yield a good approximation, the spacing of partition points
δ1 = T/M and δ2 = 2π/LN must be quite small compared with the corresponding
wave lengths of the exponentials in (18), namely, T/|m| and 2π/|n|L, respectively.
Consequently, we must assume that |m|  M and |n|  N , and choose M ! ΩT/2π,
N ! Γ/L.

In short, using the approximation procedure outlined above, one can arrive (see
[23] for a discussion of the numerical aspects of the approximation) at the expressions

(20) f̂m,n =
M−1∑
k=0

N−1∑
l=0

fk,leuke−i2πnl/Ne−i2πmk/M

and

(21) fk,l =
1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,ne
−ukei2πnl/Nei2πmk/M ,

where fk,l = (2πT/LMN)g(uk, θl)e−uk and f̂m,n = f̂
( 2πm

T , nL
)
. We note that f̂m,n

is (M,N)-periodic. Both expressions (20) and (21) can be computed efficiently by
FFT algorithms.

On introducing zk,l = euk+iθl into (20) and (21), we obtain the (M,N)-point
discrete projective Fourier transform (DPFT) and its inverse,

(22) f̂m,n =
M−1∑
k=0

N−1∑
l=0

fk,l

(
zk,l
|zk,l|

)−nL
|zk,l|−

i2πm
T +1

and

(23) fk,l =
1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,n

(
zk,l
|zk,l|

)nL
|zk,l|

i2πm
T −1,

now with fk,l = (2πT/LMN)f(zk,l). Its projectively adapted characteristics are ex-
pressed as follows:

(24) f ′k,l =
1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,n

(
z′k,l
|z′k,l|

)nL

|z′k,l|i2πm/T−1,

where z′k,l = g−1 · zk,l, g ∈ SL(2,C), and f ′k,l = (2πT/LMN)f(z′k,l). We note that in
(24) only the DPFT of the original (undistorted) pattern is involved.

9. DPFT in Digital Image Processing. The DPFT is implemented in the image
processing environment provided by the MATLAB Image Processing Toolbox. To
convert analog images to the digital form and compute their discrete Fourier trans-
forms efficiently by applying the FFT algorithms, the toolbox supports the standard
(uniform) sampling with rectangular pixel geometry. However, the DPFT has the
standard Fourier integral form in log-polar coordinates. Therefore, we must resample
an image such that the sampling geometry in the log-polar coordinate plane consists
of equal rectangular pixels. This resampling procedure is referred to as the sampling
interface.
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Fig. 1 Geometry of the sampling interface. (a) The log-polar (nonuniform) sampling of the bar
pattern in the image plane. (b) The (uniform) sampling copy of the bar pattern in the
log-plane coordinate plane.

9.1. The Sampling Interface. The sampling interface is explained in Figure 1.
The minimal rate of the log-polar sampling depends on the resolution of the

image. We require for our calculations that the upper right pixel is covered by one
sector of the log-polar partition whose area is approximately the area of the pixel;
see Figure 1(a). Otherwise, the number of sectors per this pixel is a user-supplied
parameter, if one needs to increase or decrease the image resolution.

If the digital image in the log-polar plane is represented by the corresponding
M × N image matrix, it has a resolution of M × N . To determine M and N , or
equivalently δ1 and δ2, we assume that the pattern size in the image plane is A×A and
the pixel size is d×d. Then a simple geometrical consideration gives (see Figure 1) the
following relations between dimensions of pixels: δ1 = − ln(1− d/rb) and δ2 = d/rb
radians, where rb − ra =

√
2A. Thus, in practice, d  rb and we can always take

δ1 = δ2 = δ, where δ = d/
(
ra +

√
2A
)
. Therefore, the resolution M ×N of the image

in log-polar coordinates is given by

M =
ra +

√
2A

d
ln

(
ra +

√
2A

ra

)
, N =

π
(
ra +

√
2A
)

2d
,

where we have taken L = 4.
The bar pattern is shown in Figure 1(a) with A = 16, ra = 0.5, and d = 1. Then,

we obtain δ = 0.04, M = 89, and N = 35. However, the bar pattern in Figure 1(b)
has been rendered in the log-polar coordinate plane, using the sampling interface
algorithm, with an increased resolution of 300× 300 to smoothen pixel boundaries.

9.2. Band-Limited Images. Often one can assume that a given pattern has a
bounded spectrum [−ω, ω]×[−ω, ω]. The value of ω could be determined, for example,
by the rate at which the Fourier transform of the pattern is decaying for large spatial
frequencies. The Nyquist condition requires that the sampling distance d satisfies
the relation d = π/ω in both the x- and y-axis directions. Recalling that in the
log-polar plane δ = T/M = 2π/LN , we have M = ωrbT/π and N = 2ωrb/L, where
T = ln rb

ra
. Thus, we can obtain the log-polar radial and angular frequencies Ω and
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Γ (cf. (19)) corresponding to the spatial frequency ω using the Nyquist condition as
follows: δ = π/Ω = π/Γ. Thus, we conclude that the radial and angular frequencies
Ω and Γ satisfy the relation Ω = Γ = (ra +

√
2A)ω.

9.3. Image Projective Transformations. How does one compute efficiently the
projectively transformed pattern f ′m,n, represented in (24) in terms of [f̂k,l]? We
discuss this for elements of the group SL(2,C) given by

(25) g =
(

cos φ
2 i sin φ

2
i sin φ

2 cos φ
2

)
∈ SU(2),

which represent the rotations about the x′3-axis by the angle −φ of the pattern in the
conformal camera model; see section 2. Then the action is given by

(26) z′m,n = g−1 · zm,n =
zm,n cos φ

2 − i sin
φ
2

−izm,n sin φ
2 + cos φ

2

.

Under this transformation, the equally spaced points (um, θn) transform into
points (u′m,n, θ

′
m,n) with the coordinates satisfying the equations

(27) e2u′m,n =
e2um cos2 φ

2 + sin2 φ
2 − eum sinφ sin θn

e2um sin2 φ
2 + cos2 φ

2 + eum sinφ sin θn

and

(28) tan θ′m,n =
1/2(e2um − 1) sinφ+ eum sin θn cosφ

eum cos θn
.

In terms of (u′m,n, θ
′
m,n), (24) is now expressed by

(29) f
′

m,n =
1

MN

M−1∑
k=0

N−1∑
l=0

f̂k,le
−u′m,nei2πu

′
m,nk/T eiθ

′
m,nlL.

We note that f
′

m,n denotes the value f
′

m,n given in (24) but taken at (u′m,n, θ
′
m,n) such

that z′m,n = eu
′
m,neiθ

′
m,n .

Now, the equally spaced property of the samples is destroyed. However, recent ad-
vances in nonuniform sampling theory [12, 34] allow the development of such efficient
algorithms in log-polar coordinate space.

9.4. TheDeconformalization Problem. As we have already mentioned (see [43]
for detailed discussion), the image projective transformations in (29) need corrections
for distortions due to the “conformal lens optics” of the projective camera model in
order to display the image perspective transformations.

The correction for conformal distortions of the projective transformations of pixels
is done as follows. We choose the “midpoint” η = b + ia of the pattern and extend
the projection of the pattern from the sphere S2

(0,1,0) to the plane Tp tangent to the
sphere at the point

p = σ−1(η) =
(

2a
a2 + b2 + 1

,
2

a2 + b2 + 1
,

2b
a2 + b2 + 1

)
,

where σ = j|S2
(0,1,0)

is the stereographic projection. After rotating the sphere S2
(0,1,0)

(with the tangent plane Tp attached to it) about the x′3-axis by the angle −φ, as
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given by (26), and projecting back from the (rotated) tangent plane, we obtain the
projective transformations corrected for conformal distortions, that is, the perspec-
tive transformations. We refer to it as deconformalization of the image projective
transformations.

The explicit calculations in this case give the following results. The real and imag-
inary parts of the coordinates z′m,n = x′3m,n+ix′1m,n of the projective transformations
(26) are the following:

x′3m,n =
2x3m,n

(x2
1m,n + x2

3m,n)(1− cosφ) + 2x1m,n sinφ+ cosφ+ 1
,

(30)

x′1m,n =
(x2

1m,n + x2
3m,n) sinφ+ 2x1m,n cosφ− sinφ

(x2
1m,n + x2

3m,n)(1− cosφ) + 2x1m,n sinφ+ cosφ+ 1
.

The transformed coordinates in (30) include conformal distortions. The corre-
sponding coordinates z′′m,n = x′′3m,n+ix

′′
1m,n of the projective transformation corrected

for conformal distortions (with the chosen point η = b+ ia) are given by

x′′3m,n =
2x3m,n

(2ax1m,n − a2 + 2bx3m,n − b2)(1− cosφ) + 2x1m,n sinφ+ cosφ+ 1
,

(31)

x′′1m,n =
(2ax1m,n − a2 + 2bx3m,n − b2) sinφ+ 2x1m,n cosφ− sinφ

(2ax1m,n − a2 + 2bx3m,n − b2)(1− cosφ) + 2x1m,n sinφ+ cosφ+ 1
.

The extension to general image projective transformations is simple and is not dis-
cussed further in this paper.

Finally, the coordinates (31) of the projectively transformed pixels can be used
in a straightforward way to correct for conformal distortions of log-polar coordinates
(u′m,n, θ

′
m,n) given in (27) and (28). Those corrected log-polar coordinates are denoted

by (u′′m,n, θ
′′
m,n), in terms of which the conformal-distortion free inverse DPFT is given

as follows:

(32) f ′′m,n =
1

MN

M−1∑
k=0

N−1∑
l=0

f̂k,le
−u′′m,nei2πu

′′
m,nk/T eiθ

′′
m,nlL.

9.5. DPFT and Foveated Image Processing. The resampling procedure, re-
ferred to as the sampling interface, provides an example of foveated or space-variant
image representation used for retina-like architecture of visual sensors of some cam-
eras in active vision systems [3, 5, 36]. This architecture is based on variation of
resolution across the visual field like that of the human visual system: the resolution
decreases with the distance from the fovea, achieving variable data compression. It
has been evidenced that the retinotopic mapping of the visual field to the visual cor-
tex is characterized by a complex logarithmic transformation [37]. Since the principal
complex logarithm,

ln z = ln reiθ = ln r + iθ,

is identified with log-polar coordinates (ln r, θ), it transforms the DPFT of a pattern
with log-polar sampling (retinal image) into the standard discrete Fourier transform
of the uniformly sampled pattern in the log-polar coordinate plane (cortical image).
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Fig. 2 Deconformalized image projective transformations of the bar pattern in the log-polar coordi-
nate plane.

The framework of computational harmonic analysis can be used to efficiently process
and analyze log-polar (cortical) patterns; see [46].

Despite the advantages (similarity invariance, compression), foveated sensors have
not been widely used due to the lack of elegant image processing tools [48]. Because
image processing based on DPFT naturally involves log-polar sampling geometry and
is well adapted to image perspective transformations of planar objects, it should
provide the right framework to develop the tools needed for active vision systems.
For example, the presence of a planar surface of the moving object in a scene can be
used to identify the object.

10. Computer Simulation for Binary Images. In this work we do not recon-
struct patterns’ image projective transformations based upon the expression (32), as
it requires the implementation of nonuniform sampling. This implementation, im-
portant for gray-level images—as most natural images are, with 256 possible gray
levels ranging from white to black—will be the subject of the next paper. Here
we carry out the tests for binary digital patterns, in which image projective trans-
formations are applied to the pixels’ boundaries, avoiding the nonuniform sampling
problem.

The sampling interface was implemented previously in MATLAB’s Image Pro-
cessing Toolbox by Ron Hoppe and it performed quite well [45]. In fact, the sampling
interface algorithm was applied to the pattern of resolution 312× 144 pixels and dis-
played it in the log-polar coordinate plane with resolution 2048 × 1024 pixels. This
rather high resolution was needed there as the pattern contained a fine structure
around the origin of the log-polar coordinates. Recall that the bar pattern in Fig-
ure 1(b) was displayed in the log-polar coordinate plane with a resolution of 300×300
pixels, by applying the sampling interface algorithm to the pattern in Figure 1(a).

Our numerical tests carried out for binary digital patterns include the deconfor-
malization of image projective transformations of pixels, done in the log-polar coor-
dinate plane (the step that for gray-level images will employ DPFT and nonuniform
sampling), and then rendering them in the image plane by applying the sampling
interface.

In Figure 2, the deconformalized image projective transformations of the bar
pattern are displayed in the log-polar coordinate plane for the two indicated angles
−φ in (25).
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Fig. 3 Deconformalized image projective (perspective) transformations rendered in the image plane
by using the sampling interface.

Next, the outputs from the sampling interface algorithm, applied to those two
image projective transformations, are shown in Figure 3. We see in this figure the
corresponding image perspective (deconformalized projective) transformations of the
bar pattern in the image plane.

We stress that for gray-level images of natural patterns, we must work with pro-
jective Fourier representation of images (the inverse DPFT) in log-polar coordinates,
since in this setting we can implement efficiently an algorithm reconstructing image
projective transformations from nonuniform samples. Note that the nonuniform two-
dimensional FFT is given in [12, 34], and the algorithm in [18] also contains it as one
of the components.

11. Conclusions. In this article the framework of geometric Fourier analysis
on groups and homogeneous spaces was discussed in the context of the projective-
conformal camera, leading to the construction of projective Fourier analysis for pat-
terns (i.e., planar objects). In this framework of harmonic analysis, the group SL(2,C)
identified in the camera model acts by linear-fractional (conformal) mappings on the
image plane homogeneous under the group action, providing image projective transfor-
mations. The inverse projective Fourier transform decomposes the intensity function
of a pattern in terms of the unitary irreducible representations of the Borel subgroup
of SL(2,C) with the coefficients of the decomposition given by the projective Fourier
transform of the pattern. This decomposition encodes the projective covariance, as
one can render patterns’ projective (and perspective) transformations by computing
only one projective Fourier transform of the original pattern. Its feasibility follows
from these observations: (1) although all nontrivial unitary representations of the
group SL(2,C) are infinite-dimensional, all finite unitary representations of the Borel
subgroup are one-dimensional; (2) the Borel subgroup exhausts the “projective” part
of SL(2,C).

Further, the data model for digital image representation based on the DPFT was
developed and its projective covariance emphasized analytically and in the computer
simulation of synthetic images. The DPFT has the form of the standard Fourier
transform in log-polar coordinates. Thus, to convert analog patterns to the digital
form by DPFT and to compute them by FFT, the sampling interface, exchanging
uniform samplings of rectangular pixels between the image plane and the rectangular
log-polar coordinate plane, was constructed. In particular, how the Nyquist sampling
condition is effected by the interface was discussed. The projectively adapted property
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(covariance) of the projective Fourier representation of a pattern allows one to render
its image projective transformations by computing only DPFT of the original pattern.
However, the correction for the conformal lens optics of the camera, the so-called
deconformalization of image projective transformations, is needed to render image
perspective transformations.

The log-polar sampling geometry, needed for efficient implementation of DPFT
in digital image representation, is an example of foveated or space-variant image
representation used in the active vision systems motivated by the human visual sys-
tem. Given that there has been little systematic development of computational vision
algorithms that are explicitly designed for foveated image representation, the com-
putational framework of projective harmonic analysis presented in this article should
set the stage for the development of elegant image processing and analysis tools for
foveated vision.

Finally, it has been emphasized that nonuniform FFT should be used to render
efficiently image projective transformations of natural digital patterns, as they in-
volve 256 gray levels for a pixel. It has not been done in this work but it will be
implemented in the future. It seems that the most computationally intensive compo-
nent of the implementation is the sampling interface image plane and the log-polar
plane. Since nonuniform sampling theory and practice are presently well understood
[12, 18, 34], we do not expect to have difficulties with the implementation of an algo-
rithm reconstructing images from nonuniform samples.
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