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Abstract

A binocular system developed by the author in terms of projective
Fourier transform (PFT) of the conformal camera, which numerically in-
tegrates the head, eyes, and visual cortex, is used to process visual infor-
mation during saccadic eye movements. Although we make three saccades
per second at the eyeball’s maximum speed of 700 deg/sec, our visual sys-
tem accounts for these incisive eye movements to produce a stable percept
of the world. This visual constancy is maintained by neuronal receptive
field shifts in various retinotopically organized cortical areas prior to sac-
cade onset, giving the brain access to visual information from the saccade’s
target before the eyes’ arrival. It integrates visual information acquisition
across saccades. Our modeling utilizes basic properties of PFT. First, PFT
is computable by FFT in complex logarithmic coordinates that approxi-
mate the retinotopy. Second, a translation in retinotopic (logarithmic) co-
ordinates, modeled by the shift property of the Fourier transform, remaps
the presaccadic scene into a postsaccadic reference frame. It also accounts
for the perisaccadic mislocalization observed by human subjects in labo-
ratory experiments. Because our modeling involves cross-disciplinary ar-
eas of conformal geometry, abstract and computational harmonic analysis,
computational vision, and visual neuroscience, we include the correspond-
ing background material and elucidate how these different areas interwove
in our modeling of primate perception. In particular, we present the phys-
iological and behavioral facts underlying the neural processes related to
our modeling. We also emphasize the conformal camera’s geometry and
discuss how it is uniquely useful in the intermediate-level vision compu-
tational aspects of natural scene understanding.

Keywords: The conformal camera, projective Fourier transform, com-
plex projective geometry, intermediate-level vision, retinotopy, binocular
vision, saccades, efference copy, predictive remapping, perisaccadic mislo-
calization
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1 Introduction

In the last few years, we have developed projective Fourier analysis for compu-
tational vision in the framework of the representation theory of the semisimple
Lie group SL(2,C) [58, 59, 60, 61, 62]. It was done by restricting the group
representations to the image plane of the conformal camera–the camera with
image projective transformations given by the action of SL(2,C). This analysis
provides an efficient image representation and processing that are not only well
adapted to the projective transformations of retinal images, but are also to the
retinotopic mappings of the brain’s oculomotor and visual pathways. This lat-
ter assertion stems from the fact that the projective Fourier transform (PFT) is
computable by a fast Fourier transform algorithm (FFT) in coordinates given
by a complex logarithm that transforms PFT into the standard Fourier integral
and at the same time approximates the retinotopic mappings [54].
However, the conformal camera is somewhat abstract and noticeably dif-

ferent than any other camera model used in computer vision. Nevertheless, its
remarkable advantages are revealed to us every time we model specific physiolog-
ical processes involved in visual perception. For instance, one could reasonably
expect that a stationary camera and a moving object is similar to a moving
camera and a stationary because the relative position of the camera and the
object could be the same in both cases. Remarkably, it fails in primate vi-
sion systems. In fact, when the image of a fast-moving object sweeps across
a static retina, though we are normally aware of its motion, we fail to detect
the comparable motion of images as they sweep across the retina during fast
eye movements. Computational modeling presented in this article demonstrates
that the conformal camera naturally supports this asymmetry.
Recently, building on projective Fourier analysis of the conformal camera, a

mathematical model integrating the head, eyes, and visual cortex into a single
computational binocular system was introduced in [63] with particular focus on
stereopsis. Here it is demonstrated that this integrated system may efficiently
process visual information during fast scanning eye movements called saccades,
employed to build up understanding of a scene despite the highest acuity only
present in the central foveal region of a 2 deg visual angle. We make about three
saccades per second at the eyeball’s maximum speed of 700 deg/sec. Visual
sensitivity is markedly reduced during saccades as we do not see moving retinal
images. These fragmented pieces of visual information are sent to the cortical
areas, with a minor part going to subcortical areas where they are integrated
into a stable coherent percept of a 3D world despite of the persistance of incisive
eyes movements. This constancy of vision is maintained by a widespread neural
network with multiple mechanisms receiving inputs from several sources. Not
surprisingly, in spite of a significant recent progress, how this problem is solved
by the brain has been the topic of many theories, see [69] for a recent review.
The modeling presented in this article, first proposed in [64], utilizes basic

properties of PFT to capture some of the very first computational aspects of the
neural processes during the saccadic eye movements. First, because the PFT
of an image can be efficiently computed by FFT in complex logarithmic coor-
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dinates that also approximate the retinotopy, the output from the inverse PFT
resembles the cortical representation of the image. Second, a simple transla-
tion in retinotopic (logarithmic) coordinates that is efficiently modeled here by
the standard shift property of the inverse PFT when expressed in these coordi-
nates, remaps the presaccadic scene in the reference frame centered on the fovea
into a postsaccadic reference frame centered on the impending saccade target.
Equivalently, it uniformly shifts images around the target in cortical periphery
to the cortical foveal location. Moreover, this shift that takes place in retino-
topic (logarithmic) coordinates accounts for perceptual space compression seen
around the time of saccadic eye movements by human subjects in psychophysical
laboratory experiments [34, 53].
The idea of remapping is supported by the fact that the neural correlates

of a copy of the oculomotor command to move eyes, known as efference copy
or corollary discharge [24], have been found in the form of a neuronal receptive
field shift about 50ms before a saccade onset in various retinotopically organized
visual cortical areas [18, 37]. This shift points to the possibility that prior to the
eyes arriving at the target, the brain has access to visual information from that
peripheral region. In fact, in the recent experiment [31], when human subjects
shifted fixation to the clock, their reported time was earlier than the actual
time on the clock by about 40 ms. It may integrate visual information from
an object across saccades, and therefore, eliminate the need for starting visual
information processing anew three times per second at each fixation and speed
up a costly process of visual information acquisition [66]. It may also build up
perceptual continuity across fixations [45].
The conformal camera was initially constructed for the purpose of developing

projectively adapted image representation in the framework of the only well un-
derstood ‘projective’ Fourier analysis formulated as a direction in the represen-
tation theory of semisimple Lie groups, a great achievement of the 20th-century
mathematics [29]. In the case of the conformal camera, it is the representation
theory of the group SL(2,C), the group generating image projective transfor-
mations in a conformal geometry setting; see [61] where a brief introduction to
the group representations is also given. When writing this article, it became
apparent that we should carefully set a stage for our modeling that involves
conformal projective geometry, abstract and computational harmonic analysis,
image processing, and computational vision including visual neuroscience and
machine vision. Thus, the overarching aim of this article is to elucidate how
these cross-disciplinary areas interwove in our modeling of primate perception.
To this end, the paper is organized as follows. In the next section, we in-

clude, in some detail, physiological and behavioral facts that underlie the neural
processes of human vision related to our computational modeling. In the follow-
ing three sections, we lay down the background that explains the mathematical
tools we use in modeling human vision processes. In Section 3, we introduce the
conformal camera and discuss the image projective transformations. We end
this section with the construction of the group of image projective transforma-
tions in the conformal camera. In Section 4, we review the geometry underlying
the conformal camera and demonstrate that the fundamental properties of this
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geometry should be uniquely useful in the early- and intermediate-level vision
computational aspects of natural scene understanding. In the last of these three
sections, Section 5, we show that the conformal camera possesses its own har-
monic analysis–projective Fourier analysis–which gives efficient image repre-
sentation well adapted to both the retinal image projective transformations and
the retinotopy of the brain’s visual pathways. Finally, in Section 6, we discuss
some implementation issues when working with the discrete PFT. In particular,
the binocular system with head, eyes, and visual cortex numerically integrated
by PFT is discussed. Further, using this integrated binocular system, we model
the perisaccadic perception, including the perisaccadic mislocalizations observed
in psychophysical laboratory experiments. This perisaccadic mislocalization, in
the form of perceptual space compression around the saccade target, is simulated
in the model by the standard shift property of Fourier transform. Also, the fu-
ture direction in advancing our modeling and its implementation are discussed.
The paper is summarized in the last section.
The research program presented here advances our mathematical modeling

intended for computational vision, including visual neuroscience and machine
vision systems. It is guided by a strategy important in the contemporary neu-
rocomputing research: linking known anatomical and physiological details with
efficient computational modeling and engineering designs should be vital not
only to the emerging field of neural engineering but also to interpreting relevant
neurophysiological data.

2 Visual Neuroscience Background

2.1 Visual Perception is a Creative Process

When light reflected from objects in the 3D world is impinged upon the retina,
it activates the neuronal pathways, beginning with phototransduction by about
125million photoreceptors. Next, the visual information passes through a multi-
layered circuitry of the retina where substantial processing takes place.
The only recently emerging picture [20] of the retinal processing tells us

that more than a dozen of distinct visual recordings of the retinal image are ex-
tracted. For example, one recording emphasizes the boundaries between objects
while another carries information about movement in specific directions. The
result is that more than a dozen of the most essential features of the original
retinal image are extracted in parallel and sent to the brain as a train of spikes
along about 1.5 million axons of ganglion cells to more than 30 association cor-
tex areas containing about 30 billion neurons where the details: depth, texture,
color, form, motion, etc., are added and integrated into a coherent view of the
3D world. This integration is entirely dependent upon visual experience; almost
all higher order features of vision are influenced by expectations based on past
experience. Although such influences occasionally allow the brain to be fooled
into misperception, as is the case with the optical illusion in Fig.1, they also
give us the ability to see and respond to the visual world quickly.
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Figure 1. This illusion created by Adelson illustrates how perception may
reflect the complex properties of the environment.

We see from this very brief description that visual perception is a creative
process and, for this one reason alone, its quantitative modeling must be ex-
tremely difficult. Therefore, we try to develop a model that captures only some
of the very first computational aspects of visual perception that takes place the
first seconds following the opening of our eyes in daylight. Even with this lim-
ited goal, we find that those aspects are controlled by extremely sophisticated
neural processes that involve nearly every level of the brain.

2.2 Early Visual Pathways

When humans open eyes in daylight and direct their gazes to attend a scene,
they only see with the highest clarity, the central part of about a visual angle
of 2 deg. This region is projected onto the central fovea where its image is
sampled by the hexagonal mosaic of photoreceptors consisting of mainly cone
cells that are color-selective type of photoreceptors for a sharp daylight vision.
The visual acuity decreases rapidly away from the fovea because the distance
between cones increases with eccentricity as they are outnumbered by rode cells,
photoreceptors for a low acuity black-and-white night vision. Moreover, there is
a gradual loss of hexagonal regularity of the photoreceptor mosaic. For example,
at 2.5 deg radius, which corresponds to the most visually useful region of the
retina, acuity drops 50%.
The distribution of axons in the optic nerve, which carries the retinal process-

ing output to the brain, is precisely organized, but varies along the visual path-
ways. One aspect of this organization, or the retinotopy, is that axons corre-
sponding to neighboring places in the retina are positioned closely in the nerve
bundle, with notable exception along the vertical meridian. This exception
stems from the fact that the output of each eye splits along the retinal vertical
meridian when the axons originating from the nasal half of the retina cross at the
optic chiasm to the contralateral brain’s hemisphere and join the temporal half,
which remains on the same side of its eye-of-origin. This splitting and crossing
re-organizes the retina outputs so that the left hemisphere destinations receive
information from the right visual field, and the right hemisphere destinations
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receive information from the left visual field. According to the split theory
[39, 43], which provides a greater understanding of vision cognitive processes
than the bilateral theory of overlapping projections, there is a sharp foveal split
along the vertical meridian of hemispherical cortical projections. Although it
is crucial for synthesizing 3D representation from the binocular disparities in
the pair of 2D retinal images, it presents a challenge in modeling retino-cortical
image processing across visual hemifields.

2.3 Beyond Early Visual Pathways: Visuo-Saccadic Per-

ception

One of the most important functions of any nervous system is sensing the ex-
ternal environment and responding in a way that maximizes immediate survival
chances. For this reason, the perception and action have evolved in mammals by
supporting each other’s functions. This functional link between visual percep-
tion and oculomotor action is well demonstrated in primates when they execute
the eye-scanning movements (saccades) in order to overcome the eye’s acuity
limitation in building up the scene understanding (see Fig. 2).

Figure 2. (a) San Diego skyline and harbor. (b) Progressively blurred image
from (a) simulating the progressive loss of retinal acuity with eccentricity. The
circle C1 encloses the part of the scene projected onto the high acuity fovea of
a 2 deg diameter. The circle C2 encloses the part projected onto the visually
useful faveal region of a 5 deg diameter. (c) A scanning path the eyes may

take to build the scene understanding. Adapted from [2].
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The saccadic eye movement is the most common bodily movement since
we make about three saccades per second at the eyeball’s maximum speed of
700 deg/sec. The eyes remain relatively still (while undergoing tremors, drifts
and microsaccades–a miniature, random eye movement important for proper
functioning of eyes [44]) between consecutive saccades for about 180-320 ms, de-
pending on the task performed. During this time period, the image is processed
by the retinal circuitry and sent mainly to the visual cortex (starting with the
primary visual cortex, or V1, and reaching higher cortical areas, including cog-
nitive areas) with a minor part going to oculomotor midbrain areas.
The sequence of saccades, fixations, and, often, also smooth-pursuit eye

movements for tracking a slowly moving small object in the scene, is called the
scanpath, first studied in [71]. In Fig. 2, (b) shows a progressively blurred
image from (a), simulating the progressive loss of acuity with eccentricity. In
Fig. 2 (c) we depict the scanpath that eyes might actually take to build up
understanding of the scene.
Although they are the simplest of bodily movements, the eyes’ saccades are

controlled by widespread neural network that involves nearly every level of the
brain. Most prominently, it includes the superior colliculus (SC) of the midbrain
for representing possible saccade targets, the parietal eye field (PEF) and frontal
eye field (FEF) in the parietal and frontal lobes of the neocortex (which obtain
inputs from many visual cortical areas) for assisting the SC in the control of
the involuntary (PEF) and voluntary (FEF) saccades. They also project to the
simple neural circuits in the brainstem reticular formation in the midbrain that
ensure the saccade’s outstanding speed and precision.
Remarkably, many of the neural processes involved in saccade generation and

control are amenable to precise quantitative studies such that even questions
regarding the operation of the whole structure can be addressed by building on
the existing models [21]. This not only carries immense clinical significance [15],
but also forms an essential preliminary stage in building our understanding of
human vision, the knowledge that will eventually be transferred to the emerging
field of neural engineering.
Nevertheless, some neural processes of the visuo-saccadic system remain vir-

tually unknown. Visual sensitivity is markedly reduced during saccadic move-
ments as we do not see moving images on the retinas. This barely understood
neural process is known as saccadic suppression. There is accumulating evi-
dence that viewers integrate information poorly across fixations during tasks
such as reading, visual search, and scene perception [50]. It means that, three
times per second, there are instant large changes in the retinal images without
almost any information consciously carried between images. Furthermore, be-
cause the next saccade target selection for the voluntary saccades takes place in
the higher cortical areas involving cognitive processes [22], the time needed for
the oculomotor system to plan and execute the saccadic eye movement could
take as long as 150 ms. Therefore, it is critical that visual information is effi-
ciently acquired during each fixation period of about 300 ms without repeating
much of the whole process at each fixation since it would require too much
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computational resources. However, visual constancy, the fact that we are not
aware of any discontinuity in the scene perception when executing the scanpath,
is not perfect. About 50 ms before the onset of the saccade, during saccadic
movement (∼ 30 ms) and about 50 ms after the saccade, perceptual space is
transiently compressed around the saccade target [34, 53], a phenomenon called
perisaccadic mislocalization. We continue this discussion in Section 6.5 where
we present our modeling of the perisacccadic perception based on projective
Fourier transform of the conformal camera.

3 The Conformal Camera

We model the human eyes’ imaging functions with the conformal camera, the
name of which will be explained later. The camera has many remarkable prop-
erties, the first following directly from its construction: the group of image
projective transformations in the conformal camera is generated internally and
has the ‘minimal’ property as explained in Fig. 3. In the remaining pages of
this article, the other properties will be carefully examined in their relation to
many computational aspects of visual perception.
In the conformal camera, the retina is represented by the image plane x2 = 1

with complex coordinates x3 + ix1, on which a 3D scene is projected under the
mapping

j(x1, x2, x3) = (x3 + ix1) /x2. (1)

The implicit assumption x2 �= 0 will be removed later. Next, we give the precise
form of the ‘k’ and ‘h’ image transformations introduced in Fig. 3.

Figure 3. (a) Image projective transformations are generated by iterations of
transformations covering translations ‘h’ and rotations ‘k’ of planar objects in
the scene. (b) The 2D section of the conformal camera further explains how
image projective transformations are generated and how the projective degrees
of freedom are reduced in the camera; one image projective transformation in
the conformal camera corresponds to different planar objects translations and

rotations in the 3D world.
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3.1 Basic Image Transformations

The image projective transformations in the conformal camera are generated by

the following two transformations: (1) an image is projected by
(
j|S2

(0,1,0)

)−1

into the unit sphere S2(0,1,0) centered at (0, 1, 0), then the sphere is rotated and

the (rotated) image is projected by j back to the image plane, (2) the image is
translated out of the image plane then projected by j back to the image plane.
The (1) and (2) transformations result in the ‘k’ and ‘h’ mappings in Fig. 3,
respectively. They are explicitly given as follows:

1. k transformations: SU(2) =
{( α β

−β α

)}
is the maximal compact sub-

group in SL(2,C), the group of 2 × 2 complex matrices of determinant 1. We
let the group SO(3) of three dimensional rotations act on the sphere S2(0,1,0)
by rotating it about (0, 1, 0). Furthermore, we parametrize SO(3) by the Euler
angles (ψ, φ, ψ′), where ψ is the rotation about the x2-axis, followed by the ro-
tation φ about the y3-axis, whichis parallel to the x3-axis and passes through
(0, 1, 0), and finally by the rotation ψ′ about the rotated x2-axis. Then, to each
R(ψ, φ, ψ′) in SO(3) there correspond two elements in SU(2),

k(ψ, φ, ψ′) = ±
(

ei(ψ+ψ′)/2 cos φ
2 iei(ψ−ψ′)/2 sin φ

2

ie−i(ψ−ψ′)/2 sin φ
2 e−i(ψ+ψ′)/2 cos φ

2

)
, (2)

such that j ◦ R(ψ, φ, ψ′) ◦
(
j|S2

(0,1,0)

)−1
(z) = k · z are given by the following

linear fractional mappings

k(ψ, φ, ψ′) · z = (e−i(ψ+ψ′)/2 cos φ
2 ) z + iei(ψ−ψ′)/2 sin φ

2

(iei(ψ−ψ′)/2 sin φ
2 ) z + ei(ψ+ψ′)/2 cos φ

2

. (3)

2. h transformations: Similarly, for each translation vector
−→
b = (b1, b2, b3)

where b2 �= −1 acting on the image plane T−→b (x) = x+
−→
b , there are two elements

SL(2,C),

h(b1,b2, b3) = ±
(

(1 + b2)
1/2 0

(b3 + ib1) (1 + b2)
−1/2

(1 + b2)
−1/2

)
(4)

such that j ◦ T−→
b
◦ (j|x2=1)−1 (z) = h · z are given by the corresponding linear

fractional mappings by the same action as before,

h(b1, b2, b3) · z =
(1 + b2)

−1/2
z + (b3 + ib1) (1 + b2)

−1/2

(1 + b2)
1/2

. (5)

Now, if f(z) is an image intensity function and g is either k or h mapping,
the corresponding image transformation is the following: f(g−1 · z).
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Both k · z and h · z mappings have forms of special linear-fractional trans-
formations

g · z = αz + β

γz + δ
; αδ − γβ = 1.

These mappings are conformal, that is, they preserve the oriented angles of
two tangent vectors z′k(t0) to any two curves zk(t) (k = 1, 2) intersecting at the
point q = z(t0). In fact,

d

dt

(
αzk(t) + β

γzk(t) + δ

)

t=t0

=
z′k(t0)

(γq + δ)2
=

eiχ(q)z′k(t0)

|(γq + δ)|2 ; k = 1, 2, (6)

and both vectors z′1(t0) and z′2(t0) are rotated by the same angle χ(q).

3.2 The Group of Image Projective Transformations

3.2.1 The PSL(2,C) Group

The group of image transformations in the conformal camera is generated by
all finite iterations of k and h mappings. To derive this group, we recall that
k ∈ SU(2) and note that h ∈ AN ⊂ SL(2,C) if 1 + b2 > 0 and h = εAN ⊂
SL(2,C) if 1 + b2 < 0, where

A =

{(
ρ 0

0 ρ−1

)}
, N =

{(
1 0

ξ 1

)}
, ε =

(−i 0

0 i

)
. (7)

Now, it follows from the polar decomposition SL(2,C) = SU(2)ASU(2), that
all these finite iterations result in the group SL(2,C) acting by linear-fractional
mappings

SL(2,C) �
(
a b

c d

)
· z = dz + c

bz + a
; z = x3 + ix1 ≡ (x1, 1, x3). (8)

Because ±
(
a b
c d

)
have the same action, we need to identify matrices in

SL(2,C) that differ in sign. The result is the quotient group PSL(2,C) =
SL(2,C)/{±Id}, where Id is the identity matrix, and the action (8) establishes
a group isomorphism between linear-fractional mappings and PSL(2,C). Thus,

PSL(2,C) � g =

(
a b

c d

)
�−→ f

(
g−1 · z

)
= f

(
az − c

−bz + d

)
(9)

gives the image projective transformations of the intensity function f(z).

3.2.2 Conformality

As we showed in (6), the mappings in (8) are conformal. Because of this prop-
erty, the camera is called ‘conformal’. Although, the conformal part of an image
projective transformation can be removed with almost no computational cost,
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leaving only a perspective transformation of the image (see [61, 62]); the con-
formality provides an advantage in imaging because the conformal mappings
rotate and dilate the image infinitesimal neighborhoods, and, therefore, locally
preserve the image ‘pixels’.
To complete the description of the conformal camera, we need to address

some implicit assumptions, such as the restriction −bz + d �= 0 in (9) we have
frequently made in this section.

4 Geometry of the Conformal Camera

In the homogeneous coordinate framework of projective geometry [6], the con-
formal camera is embedded into the complex plane

C
2 =

{(
z1
z2

)
| z1 = x2 + iy, z2 = x3 + ix1

}
.

In this embedding, the ‘slopes’ ξ of the complex lines z2 = ξz1 are numerically
identified with the points on the extended image plane Ĉ = C ∪ {∞) where ∞
corresponds to the line z1 = 0. We note that if x2 �= 0 and y = 0, the slope
ξ corresponds to the point x3 + ix1 at which the ray (line) in R

3 that passes
through the origin is intersecting the image plane of the conformal camera.
Now, the standard action of the group SL(2,C) on nonzero column vectors

C2, (
z′1
z′2

)
=

(
a b
c d

)(
z1
z2

)
=

(
az1 + bz2
cz1 + dz2

)

implies that the slope ξ = z2
z1
is mapped to the slope

ξ′ =
z′2
z′1
=

cz1 + dz2
az1 + bz2

=
c+ dξ

a+ bξ

agreeing with the linear fractional mappings in (8).
However, the action must be extended to include the line z1 = 0 of ‘slope’

∞ as follows: (
a b

c d

)
· ∞ = d/b,

(
a b

c d

)
· (−a/b) =∞.

The stereographic projection σ = j|S2
(0,1,0)

(with j in (1)) maps S2(0,1,0) bijectively

onto Ĉ and σ(0, 0, 0) =∞ gives a concrete meaning to the point ∞ such that

it can be treated as any other point of Ĉ. Thus, geometry of the image plane
Ĉ of the conformal camera with the image projective transformations given by
the group PSL(2,C) acting by linear-fractional transformations can be dually
described as follows:

1. Ĉ is the complex projective line, i.e., Ĉ ∼= P 1 (C) where

P 1 (C) =
{
complex lines in C2 through the origin

}
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with the group of projective transformations PSL(2,C). Thus, the im-
age projective transformations acting on the points of the extended im-
age plane (or simply, the image plane) of the conformal camera can be
identified with projective geometry (containing Euclidean geometry as a
sub-geometry) of the one-dimensional complex line [6].

2. Ĉ is the Riemann sphere since under stereographic projection σ = j|S2
(0,1,0)

we have the isomorphism Ĉ ∼= S2(0,1,0). The group PSL(2,C) acting on Ĉ

consists of the bijective meromorphic mappings of Ĉ [32]. Thus, it is the
group of holomorphic automorphisms of the Riemann sphere that preserve
the intrinsic geometry imposed by complex structure, known as Möbius
geometry [27] or inversive geometry [13].

What we have just described shows the following fundamental property: pro-
jective geometry underlying the conformal camera, also called Möbius or inver-
sive geometry, and holomorphic complex structure that provides the framework
for the development of complex numerical analysis, are in fact two faces–one
‘geometric’ and the other ‘numerical’–of the same coin. We stress that the
real projective geometry underlying the pinhole camera and usually employed
in computer vision [49, 55] does not possess this fundamental property which
sets apart our modeling of primate visual perception from other approaches.

4.1 The Conformal Camera and Visual Perception

The image plane of the conformal camera does not admit a distance that is
invariant under image projective (that is, linear-fractional) transformations.
Therefore, geometry of the conformal camera does not possess a Riemannian
metric; for instance, there is no curvature measure. As customary in complex
projective (Möbius or inversive) geometry, we consider a line as a circle passing
through the point ∞. Then, the fundamental property of this geometry can be
expressed as follows: linear-fractional mappings take circles to circles. Thus,
circles can play the role of geodesics. Moreover, each circle carries a signature
of curvature–the inverse of the radius. We showed before that linear-fractional
mappings are conformal; we add here for completeness that stereographic pro-
jection σ = j|S2

(0,1,0)
is also conformal and maps circles in the sphere S2(0,1,0) onto

circles in Ĉ. In conclusion, circles play a crucial role in the conformal camera
geometry and it should be reflected in psychological and computational aspects
of natural scene understanding if this camera is relevant to modeling primate
visual perception.
Neurophysiological experiments demonstrate that the retina performs filter-

ing of impinged images that extract local contrast spatially and temporally. For
instance, center surround cells at the retinal processing stage are triggered by
local spatial changes in intensity referred to as edges or contours. This filter-
ing is enhanced in the primary visual cortex, the first cortical area receiving,
via LGN, the retinal output, which itself is a case study in dense packing of
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overlapping visual submodalities: motion, orientation, frequency (color), and
oculomotor dominance (depth). In psychological tests, humans easily detect
a significant change in spatial intensity (low-level vision), and effortlessly and
unambiguously group this usually fragmented visual information (contours of
occluded objects, for example), into coherent, global shapes (intermediate-level
vision). Considering its computational complexity, it is one of the most difficult
problems that primate visual system has to solve [65].
The Gestalt phenomenology and quantitative psychological measurements

established the rules, summarized in the ideas of good continuation [35, 68] and
association field [19], that determine interactions between fragmented edges such
that they extend along continuous contours joining them in the way they will
normally be grouped together to faithfully represent a scene. Evidence accumu-
lated in psychological and physiological studies suggests that the human visual
system utilizes a local grouping process (association field) with two very simple
rules: collinearity and co-circularity with underlying scale invariant statistics
for both geometric arrangements in natural scenes. These rules were confirmed
in [56, 16] by statistical analysis of natural scenes. Two basic intermediate-level
descriptors that the brain employs in grouping elements into global objects are
the medial axis transformation [10], or symmetry structure [40, 41], and the
curvature extrema [3, 30]. In fact, the medial axis, which visual system extracts
as a skeletal (intermediate-level) representation of objects [36], can be defined
as the set of the centers of maximal circles inscribed inside the contour. The
curvatures at the corresponding points of a contour are given by the inverse
radii of the circles.
From the above discussion we see that, on one hand, co-circularity and scale

invariance emerge as the most basic concepts used by intermediate-level vision in
solving the difficult problems of grouping local elements into individual objects
of natural scenes. On the other hand, the non-metric projective geometry of the
conformal camera that models eye imaging functions can be entirely constructed
from circles such that co-circularity is preserved by projective transformations.
Thus, it seems that the conformal camera would be very useful in modeling eye’s
imaging functions related to the lower and intermediate-level natural vision.
Other characteristics of the conformal camera that are uniquely useful in

modeling primate visual perception are discussed in the remaining part of this
article. Next, we briefly review the unity of geometry and numerical methods
by showing that the conformal camera has its own projective Fourier transform
(PFT).

5 Projective Fourier Analysis

The projective Fourier analysis has been constructed by restricting geometric
Fourier analysis of SL(2,C)–a direction in the representation theory of the
semisimple Lie groups [33]–to the image plane of the conformal camera (see
Section 5.1 in [62]). The resulting projective Fourier transform (PFT) of a given
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image intensity function f(z) ∈ L2(C) is the following

f̂(s, k) =
i

2

∫
f(z)|z|−is−1

(
z

|z|

)−k

dzdz (10)

where (s, k) ∈ R× Z and if z = x3+ ix1, then
i
2dzdz = dx3dx1 is the Euclidean

measure on the image plane. In this work, we consider only the noncompact
picture of PFT and, for a complete mathematical account, that includes also
the compact picture we refer to [62]. The noncompact and compact pictures
in the case of Euclidean group correspond to the classical and spherical Fourier
analyses, respectively (Section 3 in [61]). In the next remark we justify the name
‘projective Fourier transform’, and, for comprehensive account, we refer to [62].

Remark 1 The functions Πs,k(z) = |z|is
(

z
|z|

)k
; s ∈ R, k ∈ Z are all one di-

mensional unitary representations of the Borel subgroup B =MAN of SL(2,C),
and they play in (10) the role complex exponentials play in the classical Fourier
transform. These one dimensional representations are all finite unitary rep-
resentations of the Borel subgroup B, as opposed to the fact that all nontrivial
unitary representations of SL(2,C) are infinite. Furthermore, the group B ‘ex-
hausts’ the projective group SL(2,C) by Gauss decomposition SL(2,C)

.
=NB,

where ‘
.
=’ means that the equality holds up to lower dimensional subset, that is,

almost everywhere, and N in (7) represents Euclidean translations.

In log-polar coordinates (u, θ) given by ln reiθ = ln r + iθ = u + iθ, f̂(k, s)
has the form of the standard Fourier integral

f̂(s, k) =

∫ ∫
f(eu+iθ)eue−i(us+θk)dudθ, (11)

where we used i
2dzdz = e2ududθ. We see that a function f that is integrable on

C
∗ = C\{0}, has finite PFT,
∣∣∣f̂(s, k)

∣∣∣ ≤
∫ 2π

0

∫ u1

−∞

f(eu+iθ)eududθ =

∫ 2π

0

∫ r1

0

f(reiθ)drdθ <∞. (12)

Therefore, this f can be extended to C by f(0) = 0. Thus, in spite of the
logarithmic singularity of log-polar coordinates, the projective Fourier transform
of integrable functions on C is finite. This observation will be crucial when we
discretize the PFT in the next section.
Inverting (11), which is done in the (u, θ)-space, we get

euf(u, θ) =
1

(2π)2

∞∑

k=−∞

∫
f̂(s, k)ei(us+θk)ds, (13)

where f(u, θ) = f(eu+iθ). We stress that although f(eu+iθ) and f(u, θ) are
numerically equal, they are given on different spaces; f(eu+iθ) is on the image
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plane in polar coordinates and f(u, θ) is on the space defined by rectangular
(u, θ)-coordinates.
Finally, by expressing (13) in the z-variable, we obtain the inverse projective

Fourier transform

f(z) =
1

(2π)2

∞∑

k=−∞

∫
f̂(s, k)|z|is−1

(
z

|z|

)k

ds. (14)

5.1 Discrete Projective Fourier Transform

To discretize the PFT we use the fact that f̂(s, k) is finite for an integrable
function f , see (12). By removing a disk |z| ≤ ra, we can assume that the
support of f(u, θ) is contained within (ln ra, ln rb)× [0, 2π). We approximate the
integral in (11) by a double Riemann sum

f̂ (2πm/T, n) ≈ 2πT

NM

M−1∑

k=0

N−1∑

l=0

eukf(eukeiθl)e−2πi(mk/M+nl/N)

with M ×N partition points

(uk, θl) = (ln ra + kT/M, 2πl/N) ; 0 ≤ k ≤M−1, 0 ≤ l ≤ N−1, T = ln(rb/ra).
(15)

Then, introducing

fk,l = (2πT/MN)f(eukeiθl) and fk,l = (2πT/MN)f(uk, θl) (16)

and defining f̂m,n by

f̂m,n =
M−1∑

k=0

N−1∑

l=0

fk,le
uke−i2πmk/Me−i2πnl/N , (17)

we obtain

fk,l =
1

MN

M−1∑

m=0

N−1∑

n=0

f̂m,ne
−ukei2πmk/Mei2πnl/N . (18)

We note that f̂m,n ≈ f̂ (2πm/T, n) and refer to [28] for a discussion of
numerical aspects on the approximation. Both expressions (17) and (18) can
be computed efficiently by FFT algorithms since the exponents are taken at
equidistant points. See simulation for a bar pattern in Fig. 4.
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Figure 4. Exp-polar sampling (the distance between circles partially displayed
in the first quadrant changes exponentially) of a bar pattern on the retina is
shown on the left. The bar pattern in the cortical space rendered by the

inverse DPFT computed with FFT is shown on the right. The cortical uniform
sampling grid, which is obtained by applying complex logarithm to the

exp-polar grid in (a), is shown only in the upper left corner.

Finally, on introducing zk,l = euk+iθl into (17) and (18), we arrive at the
(M,N)-point discrete projective Fourier transform (DPFT) and its inverse:

f̂m,n =
M−1∑

k=0

N−1∑

l=0

fk,l

(
zk,l
|zk,l|

)−n

|zk,l|−i2πm/T+1 (19)

and

fk,l =
1

MN

M−1∑

m=0

N−1∑

n−0

f̂m,n

(
zk,l
|zk,l|

)n

|zk,l|i2πm/T−1, (20)

now with fk,l = (2πT/MN)f(zk,l). The projectively adapted characteristics of
the discrete projective Fourier analysis can be expressed as follows:

f ′k,l =
1

MN

M−1∑

m=0

N−1∑

n=0

f̂m,n

(
z′k,l
|z′k,l|

)n

|z′k,l|i2πm/T−1, (21)

where z′k,l = g−1 · zk,l, g ∈ SL(2,C) and f ′k,l = (2πT/MN)f(z′k,l).
Although projective characteristics must be derived in z-coordinates, in prac-

tical image processing, (21) should be expressed in log-polar coordinates to be
fast computable by FFT. To this end, let (u′m,n, θ

′
m,n) denote log-polar coordi-

nates of z′m,n = eu
′

m,neiθ
′

m,n . In these coordinates, (21) is given by the following
expression (see [61, 62] for details)

f
′

m,n =
1

MN

M−1∑

k=0

N−1∑

l=0

f̂k,le
−u′m,nei2πu

′

m,nk/T eiθ
′

m,nlL.

Thus, we can render image projective transformations in terms of projective
Fourier transform of the original image only.
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6 DPFT in Computational Vision

We discussed before the relevance of the conformal camera to the intermediate-
level vision task of grouping image elements into individual objects in natural
scenes. Here we want to discuss the relevance of the data model of image repre-
sentation based on projective Fourier analysis to image processing in computa-
tional vision, including visual neuroscience and biologically motivated machine
vision systems.

6.1 Modeling the Retinotopy

The mappings w = ln(z ± a) − ln a, with a > 0 and ±a indicating, for differ-
ent signs, the left or right brain hemisphere, are accepted approximations of
the topographic structure of primate primary visual cortex (V1) [54], where the
parameter a removes the singularity of the logarithm. However, the discrete
projective Fourier transform (DPFT) that provides the data model for retinal
image representation, can be efficiently computed by FFT only in log-polar co-
ordinates given by the complex logarithm w = ln z, the mapping with distinctive
rotational and zoom symmetries:

ln(eiθz) = ln z + iθ, ln(ρz) = ln z + ln ρ.

Thus, we see that the Schwartz model of the retina comes with drastic conse-
quences; it destroys rotation and zoom symmetries. We also recall that PFT in
log-polar coordinates does not have a singularity at the origin, see (12).
The following facts support our modeling with DPFT. First, for small |z| �

a, ln(z ± a) − ln a is approximately linear while, for large |z| � a, it is dom-
inated by ln z. Secondly, to construct discrete sampling for DPFT, the image
was regularized by removing a disc representing the fovea (see previous section).
Thirdly, there is accumulated evidence pointing to the fact that the fovea and
periphery have different functional roles in vision [51, 52, 70] and likely involve
different image processes. Finally, by the split theory of hemispherical image
representation, which we mentioned before, the foveal region has a discontinu-
ity along the vertical meridian, with each half processed in a different brain
hemisphere [39]. We note that the two hemispheres are connected by a massive
bridge of 500 million neuronal axons called the corpus callosum.
We conclude this discussion with the following remarks: both models our

and Schwartz’ model in [54] (see Fig. 5), as well as all other similar models, are,
in fact, fovea-less models [67].
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Figure 5. (a) Schwartz model of the retina: the strip of width 2a is removed
and two half-maps of ln z are shifted to meet along the vertical meridian. (b)
Our model: the fovea is removed and the retina is split along the vertical
meridian, conforming to the split theory of the retino-cortical projection.

Furthermore, since the fovea is explicitly removed in our modeling, we expect to
extend the present model to include foveal representation in the next stage of this
modeling. In fact, the lack of the fovea in our modeling is one of the challenges
that is stalling implementation of the model. We continue this discussion in
Section 6.5.1.

6.2 On Numerical Implementation of DPFT

The DPFT approximation was obtained using the rectangular sampling grid
(uk, θl) in (15), corresponding, under the mapping,

wk,l = uk + iθl �−→ zk,l = euk+iθl = rke
iθl

to nonuniform sampling grid with equal sectors

α = θl+1 − θl =
2π

N
, l = 0, 1, ...,N − 1 (22)

and with ring radii increasing exponentially

ρk = rk+1−rk = euk+1−euk = euk(eδ−1) = rk(e
δ−1), k = 0, 1, ...,M−1, (23)

where δ = uk+1 − uk. The radii rk = r0e
kδ are given in terms of the spacing

δ = T
M and r0 = ra, where ra is the radius of the disc that has been removed to

regularize logarithmic singularity, see (15).
Lets assume that we have been given a picture of the size A × B in pixel

units, which is displayed with K dots per unit length (dpl). Then, the phys-
ical dimensions, in the chosen unit of length, of the pixel and the picture are
1/K × 1/K and A/K × B/K, respectively. Also, we assume that the retinal
coordinates’ origin (fixation) is the picture’s center.
The central disc of radius r0 represents the fovea with a uniformly distributed

of grid points and the number of the foveal pixels Nf given by πr20 = Nf/K
2.

This means that the fovea cannot increase the resolution, which is related to
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the distance of the picture from the eye. The number of sectors is obtained
from the condition 2π(r0 + r1)/2 ≈ N(1/K), where N = [2πr0K + π]. Here
[a] is the closest integer to a. To get the number of rings M , we assume that
ρ0 = r0(e

δ − 1) = 1/K and rb = rM = r0e
Mδ. We can take either rb =

(1/K)min(A,B)/2 or rb = (1/K)
√
A2 +B2/2. Thus, δ = ln[(1 + 1/r0K] and

M = (1/δ) ln(rb/r0).

Example 2 We let A × B = 512 × 512 and K = 4 per mm, so the physical
dimensions in mm are 128 ×128 and rb = 128

√
2/2 = 90.5. Furthermore, we

let Nf = 296, so r0 = 2.427 and N = 64. Finally, δ = ln(10.7084/9.7084) ≈
0.09804 and (1/0.09804) ln(90.5/2.427) ≈ M = 37. The sampling grid consists
of points in polar coordinates: (rk + ρk+1/2, θl + π/64) = (2.552ek0.09804, (2l +
1)π/64) k = 0, 1, ..., 36, l = 0, 1, ..., 63.

In this example, the number of pixels in the original image is 262, 144,
whereas the foveal (uniform sampling) and peripheral (log-polar sampling) rep-
resentation of the image contain only 2, 664 pixels.
We stress again that fk,l and fk,l are discretizations of the same image in

different planes; fk,l are the image samples in the image plane sampled on a
nonuniform grid

(
eukeiθl

)
, while the inverse DPFT output (18) gives the image

samples fk,l on the uniform grid (uk, θl), where uk = ln rk.
In summary, a simple description of the imaging model based on DPFT is as

follows: an image (analog or digital) of a scene impinged on the retina is sampled
on a nonuniform exp-polar grid, {rkeiθl}M×N , that approximates the density
distribution of retinal ganglion cells, giving the set of pixels {fk,l}N×M . In this

grid, the radial spacing changes exponentially: rk = rae
δk, k = 1, 2, ...,M , and

the angular spacing is constant: θl = αl, l = 1, 2, ..., N . As it was shown in Ex-
ample 2, this sampling results in about 100 times less pixels than in the original
image. To render {fk,l}N×M , the DPFT is formed and computed by FFT in
log-polar coordinates (uk, θl) obtained by applying a complex logarithm as fol-

lows: ln(rae
δkeiαl) = ln ra+δk+ iαl = uk+ iθl, resulting in the set

{
f̂k,l

}
M×N

.

Next, the IPFT is assembled and computed again by FFT, this time giving the
image samples fk,l = fk,l rendered in cortical (log-polar) coordinates (uk, θl).

6.3 Relation to Other Numerical Approaches

From the numerical approaches to foveate (or space-variant) vision, involving,
for example, Fourier-Mellin transform or log-polar Hough transform, the most
closely related to our work are results reported by Schwartz’ group at Boston
University. We note that the approximation of the retinotopy by a complex
logarithm (see Section 6.1) was first proposed by Eric Schwartz in 1977. This
group introduced the fast exponential chirp transform (FECT) [11] in their
attempt to develop numerical algorithms for space-variant image processing.
Basically, both FECT and its inverse were obtained by the change of variables
in both the spatial and frequency domains in the standard Fourier integrals.
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The discrete FECT was introduced somehow ad hoc, without references to nu-
merical aspects of the approximation. Moreover, some basic components of
Fourier analysis, such as underlying geometry or Plancherel measure was not
considered. In comparison, projective Fourier transform (PFT) provides an effi-
cient image representation well adapted to projective transformations produced
in the conformal camera by the group SL(2,C) acting on the image plane by
linear-fractional mappings. Significantly, PFT can be obtained by restricting
geometric Fourier analysis of the Lie group SL(2,C) to the image plane of the
conformal camera. Thus, the conformal camera comes with its own harmonic
analysis. Moreover, PFT is computable by FFT in log-polar coordinates given
by a complex logarithm that approximates the retinotopy. It implies that PFT
can integrate the head, eyes, and visual cortex into a single computational sys-
tem. This aspect is discussed, with special attention to perisaccadic perception,
in the remaining part of the paper. Another advantage of PFT is the complex
(conformal) geometric analysis underlying the conformal camera. We discussed,
in Section 4.1, the relation of this geometry to the intermediate-level vision prob-
lem of grouping local contours into individual objects and the background of
natural scenes.
The other approaches to space-variant vision use the geometric transforma-

tions, mainly based on a complex logarithmic function between the nonuniform
(retinal) sampling grid and the uniform (cortical) grid for the purpose of devel-
oping computer programs. These approaches can be classified into two different
groups. The first group of problems deal with visualizing and classifying large
information data sets. We give two examples for the first group. The first deals
with the problem of mapping information space to the image space for navigation
through complex two-dimensional data sets when viewing small details and at
the same time the general overview [12]. The second gives the model based image
processing in mathematical morphology for qualifying/segmenting/quantifying
spots topology in genomic microarray-based data [1]. The second group of prob-
lems is related to robotic vision. We give only a few examples of such problems,
which include tracking [7], navigation [5], detection salient regions [57], and dis-
parity estimation [42]. However, it seems that they share one common problem:
high computational costs in the geometric transformation process.
In the next figure, we show a simulation applied to Fig. 2 (a) with the

software available over internet [8]. In Fig. 6, the San Diego skyline and har-
bor shown in (a) is sampled in retinal exp-polar coordinates (with the vertical
meridian deleted according to the split theory discussed before) and mapped by
a complex logarithm transformation to rectangular log-polar coordinates (b).
The inverse geometric transformation shown in (c) results in the retinal image
that simulates the sampling by the ganglion cells density as a function of eccen-
tricity.
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Figure 6. (a) San Diego skyline and harbor. (b) Its log-polar image, the
vertical meridian deleted, obtained by the geometric transformation of both
the polar samples with the radial partition changing exponentially and a

constant angular partition, into regular samples in log-polar rectangular plane
(c)

We note that the image processing presented here (see the last paragraph in
the previous section) differs from the above simulation by one crucial aspect: we
use projective Fourier analysis framework for image representation that provides
low computational cost of the retino-cortical (logarithmic) transformation.

6.4 DPFT and Binocular Vision

In order to carry out numerical experiments with the discrete PFT, the con-
formal camera should work in the following setup: we get a set of samples
fk,l = f(eukeiθl) of an image f from a camera with anthropomorphic visual
sensors [9] or an ‘exp-polar’ scanner with the sampling geometry similar to the

distribution density of the retinal ganglion cells. Next, we form DPFT f̂k,l ac-

cording to (17) and compute it with FFT. Then, we compute IDPFT of f̂k,l
given in (18), again with FFT. However this output from IDPFT renders the
retinotopic image fk,l of the retinal samples in cortical log-polar coordinates.
This setup provides an efficient model that integrates the head, eyes, and the
cortex into a single computational system, which is introduced next.
We discuss this integrated system by assuming that a 3D scene consists of a

gray square with a red bar located in front of it (see Fig. 7).
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Figure 7. The scene consisting of a gray square with a red bar in front of it is
seen by an observer. The visual pathway with the major cortical areas is

shown.

The integrated binocular system with eyes modeled by the conformal cameras
and this scene as seen from above is shown in Fig. 8.

Figure 8. The head-eyes-visual cortex integrated system. Following from the
fact that eyes are modeled by the conformal camera, theoretical horopters are

conics that resemble empirical horopters.

A simulation of the integrated binocular system with the grey square-red bar
scene can be seen in Fig. 9. Each eye sees the scene from a different vantage
point ((a) and (c) in Fig. 9), as the eyes are separated laterally. The retinal
projections are sampled on the exp-polar grid with the meridian line removed
as implied by the split theory.
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Figure 9. In (a) and (c), the 3D scene from Fig. 8 is seen from a different
vantage point by each eye (i.e., the conformal camera) due to eyes lateral

displacement. The Matlab-simulated right and left retinal projections and the
retinotopic image can be seen in (b), (d) and (f), respectively.

The retinotopic images are simulated in Matlab using the program from
[8], and the cut-and-paste transformations are used to account for the global
retinotopy topology. For example, the output from FFT computing the inverse
DPFT of the scene projected on the right eye and sampled by ganglion cells is
shown in Fig 10 (b).

Figure 10. (a) The simulation of the rigth eye’s projected scene sampled by
ganglion cells. (b) The retinotopic image of the sampled projection shown in
(a); the vertical size corresponds to the lenght of the angular interval [−π, π]

The cut-and-paste operation is applied to the output in Fig. 10 (b) and to the
corresponding DPFT output of the left eye to obtain (f) in Fig. 9.
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6.5 Modeling Perisaccadic Perception with DPFT

Because of acuity limitations of foveate vision, a sequence of fast eye rotations
is necessary for processing the details of the scene by fixating eyes consecutively
on the targets of interest. The sequence of fixations, saccades and smooth
pursuits, called the scanpath, is the most basic feature of foveate vision (cf.,
Fig 2). The fact that we do not see moving images on the retinas points to
a poor integration of visual information across fixations during tasks such as
reading, visual searching, or looking at a scene. Given the limited computational
resources, it is critical that visual information is not only efficiently acquired
during each fixation, but also that it is done without starting anew much of this
acquisition process at each fixation.
Although we are not aware of discontinuities in a scene perception when ex-

ecuting a scanpath, this visual constancy is not perfect. In psychophysical lab-
oratory experiments, the phenomenon of perisaccadic compression is observed:
before the onset of the saccade, brief flashes are perceived by human subjects
to be compressed around the impending saccade target [34, 53], see Fig. 11.
However, perisaccadic perception experiments have revealed a multitude of mis-
localization phenomena, pointing to the involvement of many different neural
processes. Accordingly, many different theories have been proposed, see [26].

Figure 11. The spatial pattern of perisaccadis compression. It shows
experimental data of the absolute mislocalization (lower row), reference to the
true position of flashed dot randomly chosen from an array of 24 dots and four

different saccade amplitude (upper row). Adapted from [38].

Two computational theories of perisaccadic vision that have been proposed
in visual neuroscience are related to our modeling. The first theory, suggested
in [66], states that an efference copy generated by SC, a copy of an oculomotor
command to rotate eyes in order to execute the saccade, is used to uniformly
shift cortical neural activity representing spatial locations of the saccade target
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area toward foveal representation. It was proposed that this shift is reflected
on the neuronal level by a transient spatial remapping of the receptive fields in
numerous retinotopically organized cortical areas ([18, 37]), including the supe-
rior colliculus (SC), parietal eye field (PEF), and frontal eye field (FEF). It can
explain the perceived increase in spatial resolution around the saccade target as
more foveal neurons are available there to process the details of objects. Fur-
thermore, because the shift occurs in logarithmic coordinates that approximate
retinotopy, the model can also explain perceived perisaccadic compression.
The second theory, [38], explains the perisaccadic compression by directing

spatial attention to the target of a planned saccade. The proposed computa-
tional model assumes that the initial stimulus neuronal activity in the visual
cortical area is distorted by the feedback of the retinotopically organized ac-
tivity hill of the saccade target in the oculomotor SC layer, what pushes the
population response of the flashed stimulus in retinotopically organized cortical
areas (including PEF and FEF) towards the saccade target. This boost of per-
formance at the target location of the saccade occurs immediately before the
saccade onset increases spatial discrimination. The shift of the neuronal activ-
ity in logarithmic coordinates, and hence perisaccadic compression, is a direct
consequences of it.
Because circuitry underlying receptive field remapping is widespread and

not well understood, it cannot be easily decided whether saccadic remapping is
the cause or consequence of saccadic compression. For example, only recently
it was reported in [46] that a phenomenon very similar to the remapping occurs
in extrastriate (V4, and, though progressively weaker, V3, V2 and V1) cortical
areas in humans. Remarkably, remapping in extrastriate cortex could be func-
tionally related to the integration of visual information from a constant object
across saccades [23].
In this section, we model perisaccadic perception using the integrated binoc-

ular system, addressing the process of presaccadic activity consisting shifts of
neurons current receptive fields to their future postsaccadic locations, that is
thought to underlie the scene remapping based on anticipated saccadic eye move-
ment (efference copy) with the accompanied perisaccadic perceptual space com-
pression. The postsaccadic activity during which actual integration of visual
features takes place, will be considered in the next stage of our modeling. Al-
though, our modeling directly conforms to the theory in [66], it may also be
useful, on the image processing level, in representing the resulting receptive
field shifts from ‘attentional multiplicative gain field interaction’ [38], especially
since the efficiency of the whole modeling, which must be repeated three times
per second, was not addressed by the authors.
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Figure 12. The description is given in the text of the article.

We start here by supplementing the integrated binocular system presented
in Section 6.4 with the most important subcortical and cortical pathways of the
visuo-saccadic neural processes. These pathways depicted by arrowhead lines
in Fig. 12, include the SC of the midbrain, which contains retinotopically or-
ganized visual and oculomotor layers, the PEF, and the FEF in the parietal
and frontal lobes of the neocortex (which themselves obtain inputs from many
visual cortical areas) for assisting the SC in the control of the involuntary (PEF)
and voluntary (FEF) saccades. We also include the interhemispheric pathways,
the corpus callosum (about 500 million of neuronal axons connecting cerebral
cortical hemispheres), and the intercollicular commissure, because the coordi-
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nated movement of two eyes is a bihemispheric event. The motor commands
that originate from the brain’s major hemisphere (the left hemisphere for most
right-handed people) travel across the corpus callosum to the minor hemisphere
then down to brainstem, where part of it again crosses to the other side of
the brain before both eyes are finally moved in coordination [17]. We believe
that building on the existing models [21] and accelerating advances in visual
neuroscience will soon allow the inclusion of these pathways such that the oper-
ation of a more complete system of perisaccadic perception can be addressed in
numerical modeling in a way that could be useful in neural engineering designs.
The course of events taking place during perisaccadic perception, shown in

Fig. 12, is as follows: the eyes are fixated at F and the new stimulus appears
at T. The SC population T′ at the retinotopic image of T (green spot in the
left SC) calculates the position of the target T of an impending saccade. The
SC also codes the motor command for the execution of the saccade.
About 50 ms before the onset of the saccade, during the saccade (about

30 ms), and about 50 ms after the saccade, the visual sensitivity is reduced
and flashes (dark blue dotes) around T are not perceived in veridical locations.
Instead, a copy of the motor command (efference copy) is sent to translate the
cortical image (light blue dots in V1) of flashes to remap it into a target-centered
frame (red dotes in V1).
This internal remapping results in the illusory compression of flashes, shown

by red arrows. The compression is perceived around the incoming target T even
though the eyes fixation is moving from F to T. The location of the cortical area
of neural correlates of remapping is uncertain; it is required that this area is
retinotopically organized. Although it could be PEF/FEF, here, for simplicity,
this area is represented by V1.
During the fixation of eyes at F, lasting on average about 300 ms, the image

is sampled by ganglion cells fk,l = f(eukeiθl) and its DPFT f̂k,l is computed
by FFT in log-polar coordinates (uk, θl) where uk = ln rk. The inverse DPFT,
computed again by FFT, gives a cortical image representation

fk,l = f(uk, θl) = f(eukeiθl)

where disparity-sensitive cells contribute to the building 3D understanding of
the scene. In the same fixation period, the next saccade’s target T is selected
(PEF/FEF) and its position in respect to the fovea is calculated and converted
into the motor command to move the eyes (SC). During that time interval of
about 130 ms, the visual sensitivity is reduced, neural processes, using a copy of
the eyes motor command (efference copy), transiently shift the cortical image. In
our modeling, this shift is generated using the shift property of Fourier transform
as follows

f(uk + jδ, θl) = fk+j,l =
1

MN

M−1∑

k=0

N−1∑

l=0

ei2πmj/M f̂k,le
−(uk+jδ)ei2πmk/Mei2πnl/N ,

where δ is the corresponding spacing. It brings the presaccadic scene at F in
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fovea-centered coordinates into postsaccadic scene T in target-centered coordi-
nates. However,

f(uk + jδ, θl) = f(euk+jδeiθl) = f(ejδrke
iθl)

compresses perceptual space.

6.5.1 Challenges with Implementation

There are some problems that must be addressed before we can implement
our modeling of primate perception. One problem is due to the fact that the
model of retinotopy is fovea-less. The other is related to the global topology of
retinotopy, and in particular, to the vertical meridian split in retinas (and hence
in the visual field) of the brain’s hemispheric projections.
In order to address the first problem, we need to develop a model of retino-

topy that will include both foveal and peripheral regions. Hence, the projective
Fourier transform that gives extrafoveal image representation must be comple-
mented with a transform for the foveal image representation. Two different
transforms, foveal and extrafoveal, could conform to the accumulated evidence
indicating that the fovea and periphery have different functional roles in vision
and may have visual processing differences [51, 52, 70]. Maybe the simplest way
to construct the foveal image transform is restricting the group SL(2,C) action
(which gives both image projective transformations and Möbius geometry), to
Euclidean or affine subgroups. We refer to Section 3.2 in [61] where Euclidean
Fourier transform is introduced in the framework of representation theory to
motivate the construction of PFT and can be seen as its ‘restriction’ to the
Euclidean subgroup of SL(2,C). The affine subgroup could bring the wavelet
transform to supplement PFT.
The second problem involves two facts that are not compatible with each

other: the computation of DPFT of an image in log-polar coordinates by FFT
and the foveal split along the vertical meridian and partial crossing that re-
organizes the retina outputs so that the left hemisphere destinations receive
information from the right visual field, and the right hemisphere destinations
receive information from the left visual field. The retina (that is, the image
plane of the conformal camera) with the foveal disc removed has the visual
field representad by an annulus, which under the complex logarithm w = ln z
is mapped into a rectangle. In order to discretize PFT, this rectangle must be
extended periodically, which forces a quasiperiodic extension of the annulus, see
Eq. 21 in [58]. In our numerical experiments with the image translation by the
corresponding shift property of DPFT, the image ‘disappeared’ into the foveal
region of the cortical area (the foveal region of the retina) to reappear from the
opposite side of the rectangle (opposite circular boundary of the annulus). Also,
we need to modify the FFT to account for the global retinotopy simulated in
Fig. 9 (f) by the cut-and-paste transformations. Clearly, the two problems are
interdependent.
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7 Conclusions

In this article we presented a comprehensive account of our approach to com-
putational vision developed over the last decade. It was done by bringing in
one place physiological and behavioral aspects of primate visual perception and
the conformal camera’s computational harmonic analysis with the underlying
geometry. This allowed us to discuss remarkable advantages that the conformal
camera possesses over other cameras used in computational vision. First, the
conformal camera geometry fully accounts for the basic concepts of co-circularity
and scale invariance employed by human vision system in solving the difficult
intermediate-level vision problems of grouping local elements into individual
objects of natural scenes. Second, the conformal camera has its own harmonic
analysis–projective Fourier analysis– for image representation and process-
ing that is well adapted to image projective transformations and the retino-
topic mapping of the brain visual and oculomotor pathways. Projective Fourier
analysis integrates the binocular model consisting of the head, eyes (conformal
cameras), and the visual cortex into a single computational system. Based on
this binocular system, we proposed a model of the perisaccadic perception, in-
cluding perisaccadic mislocalizations observed in laboratory experiments. More
precisely, we modeled the presaccadic activity, which, through shifts of neurons
current receptive fields to their future postsaccadic locations, is thought to un-
derlie remapping based on anticipated saccadic eye movement (efference copy).
The postsaccadic activity, during which the actual integration of visual features
takes place, will be considered in the next stage of our modeling.
Finally, we presented numerous challenges with the implementation of our

modeling. First, the fovea-less model of the retina, based on the discrete pro-
jective Fourier transform (DPFT) of an image, must be supplemented with the
foveal image transform. Second, the computations of the DPFT with a fast
Fourier transform algorithm (FFT) has to be modified in order to account for
the global retinotopy of the brain visual pathway.
It was observed that saccades cause, not only a compression of space, but

also of time [47]. In order to preserve visual stability during the saccadic scan-
path, receptive fields undergo a fast remapping at the time of saccades. When
the speed of this remapping approaches the physical limit of neural informa-
tion transfer, relativistic-like effects are psychophysiologically observed and may
cause space-time compression [14, 48]. Curiously, this suggestion can also be
accounted for in our model based on projective Fourier analysis since the group
of image projective transformations in the conformal camera is the double cover
of the group of Lorentz transformations of Einstein’s special relativity.
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