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ABSTRACT. Projective Fourier analysis—geometric Fourier analysis of the group SL(2,C),
the group identified in the conformal camera that provides image perspective transformations—is
discussed in the framework of representation theory of semisimple Lie groups. The compact model
of projective Fourier analysis is constructed, complementing the noncompact model proposed
before. Detailed mathematical formulation of both models is presented. It is demonstrated that
the projective Fourier analysis provides the data model for efficient perspectively covariant digital
image representation well adapted to the retino-cortical mapping of biological visual system, and
therefore, explicitly designed for the foveated sensors of a silicon retina, the use of which in active
vision systems is presently limited due to the lack of such a model.

1. Introduction

In computational vision, including machine vision and computational visual neuroscience,
image representation should be well adapted to image projective transformations produced
by different perspectives between objects and the imaging system. However, computational
harmonic analysis, the most sophisticated framework for image representation encompass-
ing models of Fourier, wavelet and Gabor analyses [6, 8, 10, 18], is not well adapted to image
perspective transformations. In the search for such an image representation, one is led to the
aspects of harmonic analysis associated with abstract procedure in group theory—unitary
group representations, and in particular, geometric Fourier analysis. In this framework, the
generalized Fourier transform plays the same role on any group, as the classical Fourier
transform on the additive group of real numbers, where the irreducible unitary represen-
tations are homomorphisms between this group and the multiplicative group of complex
numbers of modulus one (the circle group). Since group theory is rooted in large part in
geometry through Klein’s Erlanger Program of studying spaces through their groups of
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motions, this geometric Fourier analysis emphasizes from the very beginning the covari-
ance with respect to the geometric transformations. The above mentioned Fourier, wavelet
and Gabor analyses involve irreducible unitary representations of Euclidean, affine and
Weyl-Heisenberg groups, or subgroups, and therefore, they are not well adapted to image
perspective transformations.

In computational neuroscience of the brain’s visual pathway [15], the image rep-
resentation should be also well adapted to the visuotopic (retinotopic, or topographic)
mapping—the mapping that provides the initial stage in the process by which the brain
processes visual information. In this processing stage, the visual field is centrally projected
onto the retina of the eye where it is sampled by nonuniformly distributed light-sensitive
cells with the highest density at the fovea and concentrically decreasing toward the periph-
ery. This retinal image is carried by the optic nerve to the lateral geniculate nucleus (LGN)
of the thalamus, where most of the axons must synapse. From there, the visual information
is relayed via optic radiation and ultimately arrives as a cortical image to the primary visual
cortex, which has a constant density of neural cells and is located on the back of the brain.
The topographic arrangement of axons along the visual pathway with the difference in the
densities of cells in the retina and the visual cortex, produces a highly distorted cortical
image of the visual field. In biologically motivated machine vision systems [22], consisting
of the digital camera with a retina-like sensor architecture (silicon retina), coupled with a
hardware image processor and linked to a computer performing image analysis, the sili-
con retina and image processor produce the digital image similar to the cortical image of
the retinotopic mapping. In spite of the advantages such as data processing reduction and
similarity invariance, the use of the silicon retina architecture in active vision systems is
presently limited due to the lack of elegant image processing tools [31].

The image representation well adapted to image projective transformations has been
proposed and studied in a series of articles: [26, 27, 28, 29]. It has been done by construct-
ing projective Fourier analysis of the conformal camera. In this camera, the semisimple Lie
group SL(2,C), acting by linear-fractional mappings on the complex image plane, provides
the image projective transformations consisting of image perspective transformations and
conformal distortions resulting from the “conformal lens optics” of the camera [28]. In
this analysis, an image is decomposed in terms of the one-dimensional irreducible unitary
representations of the Borel subgroup of SL(2,C), with the coefficients of the represen-
tations given by projective Fourier transform. Using this decomposition, we could render
pattern’s projective transformations by computing only one projective Fourier transform of
the original pattern. Feasibility of this projective characteristic of the data model rests on
the following fact: Although, all nontrivial unitary representations of the group SL(2,C)
are infinite-dimensional, all finite-dimensional irreducible unitary representations of the
Borel subgroup are one-dimensional, and this subgroup exhausts the “projective” part of
SL(2,C).

In this article, we present the “whole” projective Fourier analysis and also demon-
strate that it provides the computational framework well suited for developing efficient
image processing tools explicitly designed for foveated vision systems, both biological and
artificial. In the framework of geometric Fourier analysis of the semisimple Lie groups, we
construct the two models of the projective Fourier analysis. The first one (proposed in [26])
is based on the noncompact picture of the induced unitary representations of SL(2,C),
while the second one involves the (reduced) compact picture of such representations. Both
pictures have been used to study representations of semisimple Lie groups [17]. Further,
after we review the derivation of the discrete projective Fourier transform in the noncompact
model, analytical aspects of the data model for digital image representation based on it are
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discussed. In particular, we show how to correct the conformal lens optics of the camera in
order to render digital image perspective transformations. The projective Fourier transform
when expressed in log-polar coordinates (by identifying ln reiθ = ln r + iθ with (ln r, θ)),
becomes the standard Fourier transform. Thus, in the log-polar coordinates plane, we can
compute efficiently the discrete projective Fourier transform of an image by applying a 2-D
FFT. It has been evidenced in experimental neuroscience that the retinotopic mapping of the
visual field to the primary visual cortex in primates, is characterized by a complex logarith-
mic transformation [23]. Therefore, the projectively covariant digital image representation
developed in this work, is well adapted to both the retinotopic mapping of the brain visual
pathway and the silicon retina sensors of active vision systems. This aspect of projective
Fourier analysis was presented by the author on the SIAM conference [30]; see also the
article by James Case in the December 2003 issue of SIAM News.

Fourier analysis on groups, their homogeneous spaces, and on symmetric spaces
in particular, based on geometric ideas was originated by Gelfand’s school and Harish-
Chandra, and further developed by Helgason [11]. Although, we work with geometric
Fourier analysis of SL(2,C), harmonic analysis for the simplest noncompact semisimple
complex Lie group (developed by Gelfand’s school [9]), it is advantageous to discuss the
projective Fourier analysis in a more general context of semisimple Lie groups (Harish-
Chandra’s approach). A good introduction to the field of representation theory of semisim-
ple Lie groups can be found in [17]. However, the reader who is not familiar with the
basic definitions and facts of representation theory of semisimple Lie groups (including the
definition of a semisimple Lie group in the context used in this article) is referred to [14],
where an elementary account of Harish-Chandra’s fundamental (but very technical) work
in the field of representation theory is also given.

2. The Group of Image Projective Transformations

2.1 The Conformal Camera

The camera model is based on the perspective projection

j (x1, x2, x3) = x3 + ix1

x2
. (2.1)

Thus, the space points are centrally projected through the origin on the image plane x2 = 1
where the points (x1, 1, x3) are identified with complex numbers x3 + ix1. Next, the
projection is embedded into the complex plane

C2 =
{(
z1

z2

)
| z1 = x2 + iy, z2 = x3 + ix1

}
such that the complex line z2 = ξz1 of “slope” ξ satisfying y = 0 corresponds to the line
in R3 that passes through the origin and intersects the image plane x2 = 1 at the point
ξ = x3 + ix1. One assumes that the line z1 = 0 has the slope ∞, and regards the image
plane as the extended complex line Ĉ = C ∪ {∞} where j (x1, 0, x3) = ∞. The action
of the Lie group SL(2,C) on nonzero column vectors

(
z1
z2

)
in C2 induces the action on the

slopes of all complex lines through the origin in C2 by the linear-fractional transformations:
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If g = (
α β
γ δ

)
then

ξ �−→ g · ξ = δξ + γ

βξ + α
. (2.2)

The action (2.2) gives the image transformations of patterns, or planar objects viz.:
If f : D → R is the intensity function of a pattern, then fg : gD → R, defined by
fg(z) = f (g−1 · z), is the intensity function of the transformed pattern under the action
of g ∈ PSL(2,C) = SL(2,C)/{±I }. The camera possesses the “conformal lens optics”
because the linear-fractional transformations in (2.2) are conformal mappings, and therefore,
it is referred to as the conformal camera. It is described in Section 2.3 in physical terms
and its usefulness in computational vision is discussed in Section 2.4.

2.2 Geometry of the Image Plane

The image plane Ĉ of the conformal camera can be dually identified either with:
(1) The complex projective line P 1 (C) where

P 1 (C) = {
complex lines in C2 through the origin

}
.

The projective geometry of C is describe by the group of projective transformations PSL
(2,C) = SL(2,C)/{±I }, see [3], or with

(2) The Riemann sphere where the isomorphism Ĉ ∼= S2
(0,1,0) is given by stereo-

graphic projection [cf. (2.1)]

j |S2
(0,1,0)

: S2
(0,1,0) → Ĉ . (2.3)

The group PSL(2,C) acting on Ĉ consists of the group of automorphisms [16] that preserve
the intrinsic geometry imposed by complex structure, known as Möbius geometry [12], or
inversive geometry [4].

2.3 Image Projective and Perspective Transformations

The maximal compact subgroup SU(2) = {( α β

−β α

) | |α|2 + |β|2 = 1
}

in SL(2,C)
is the universal double covering group of the group of rotations SO(3), [5]. To express
this relation, the elements R ∈ SO(3) rotating the sphere S2

(0,1,0) about its center (0, 1, 0)
(cf., Section 5.2), are parametrized by the Euler angles (ψ, φ,ψ ′) where ψ is the rotation
angle about the x2-axis, followed by the rotation angle φ about the x′

3-axis that is parallel
to the x3-axis and passing through (0, 1, 0), and finally by the rotation angle ψ ′ about the
rotated x2-axis. Then under the covering, to each R(ψ, φ,ψ ′) in SO(3) there correspond
two elements in SU(2),

k
(
ψ, φ,ψ ′) = ±

(
eiψ/2 0

0 e−iψ/2

)(
cos φ2 i sin φ

2

i sin φ
2 cos φ2

)(
eiψ

′/2 0

0 e−iψ ′/2

)
, (2.4)

acting on C as in (2.2), such that

j |S2
(0,1,0)

◦ R (ψ, φ,ψ ′) = k
(
ψ, φ,ψ ′) ◦ j |S2

(0,1,0)
. (2.5)
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For translations, if (x1, 1, x3) is translated by the vector t = (t1, t2, t3)
t ∈ R3 such

that t2 	= −1 and projected back to the image plane by (2.1), we get (x3 + ix1 + t3 + it1)/

(1 + t2) = (
α −1ξ + β

)
/α where α = (1 + t2)

1/2, if 1 + t2 > 0, α = i (|1 + t2|)1/2, if
1 + t2 < 0, and β = γα−1 with γ = (t3 + it1). Therefore, there are two elements in
SL(2,C),

h(t1, t2, t3) = ±
(
α 0

β α−1

)
= ±

(
α 0

0 α−1

)(
1 0

γ 1

)
,

such that

j ◦ t = h(t1, t2, t3) ◦ j |S2
(0,1,0)

. (2.6)

It implies the factorization of h: If 1 + t2 > 0, then h ∈ AÑ, and, if 1 + t2 < 0, then
h = εAÑ, ε = (−i 0

0 i

)
, where Ñ = {(1 0

γ 1

) | γ ∈ C
}
, and A = {(

δ 0
0 δ−1

) | δ ∈ R+
}

are
the closed subgroups of SL(2,C).

From (2.5) and (2.6) emerges description of the conformal camera in physical terms:
Patterns as two-dimensional entities “live” on the image plane and their projective trans-
formations are generated by: (i) projecting the pattern into the sphere S2

(0,1,0), rotating the
sphere by R(ψ, φ,ψ ′), and, then projecting the rotated pattern back to the image plane;
the resulting image projective transformation z′ = k(ψ, φ,ψ ′) · z [see Figure 1 (A)],
and (ii) translating the pattern out of the image plane by a vector t = (t1, t2, t3)

t , and,
then projecting it back to the image plane; the resulting image projective transformation
z′ = h(t1, t2, t3) · z [see Figure 1 (A)].

FIGURE 1 (A) The image projective transformations in the conformal camera are generated by rotations and
translations. (B) The deconformalization process; for convenience only the intersection of the conformal camera
with the plane x3 = 0 is shown.
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It follows from the polar (or KAK) decomposition SL(2,C) = SU(2)ASU(2), [17],
that the finite iterations of the basic image projective transformations given by SU(2) and
A generate the group of image projective transformations SL(2,C).

In order to obtain the image perspective transformations, its projective transforma-
tions under the action of (2.4) need the correction for conformal distortions. It is done
as follows, see Figure 1 (B). We choose a point η = b + ia of the pattern and extend
its projection from the sphere S2

(0,1,0) to the plane Tp tangent to the sphere at the point

p = σ(η) = (
a2 + b2 + 1

)−1
(2a, 2, 2b) where σ is the inverse of stereographic projec-

tion (2.3). After rotating the sphere S2
(0,1,0) (with the tangent plane Tp attached to it) about

the x′
3-axis by the angle −φ (for simplicity, ψ = ψ ′ = 0), and projecting it back from the

(rotated) tangent plane, we obtain the projective transformations corrected for conformal
distortions; that is, the perspective transformations. We refer to it as deconformalization of
the image projective transformations.

Explicitly, the real and imaginary parts of the coordinates z′ = x′
3 + ix′

1, of the
projective transformations z′ = k(0,−φ, 0) · z,

x′
3 = 2x3(

x2
1 + x2

3

)
(1 − cosφ)+ 2x1 sin φ + cosφ + 1

x′
1 =

(
x2

1 + x2
3

)
sin φ + 2x1 cosφ − sin φ(

x2
1 + x2

3

)
(1 − cosφ)+ 2x1 sin φ + cosφ + 1

.

(2.7)

include conformal distortions (we took −φ because k(0,−φ, 0) maps the pattern form the
first quadrant into this quadrant). Then, the corresponding coordinates z′′ = x′′

3 + ix′′
1 of

the perspective transformation (with chosen η = b + ia) are given by

x′′
3 = 2x3(

2ax1 − a2 + 2bx3 − b2
)
(1 − cosφ)+ 2x1 sin φ + cosφ + 1

x′′
1 =

(
2ax1 − a2 + 2bx3 − b2

)
sin φ + 2x1 cosφ − sin φ(

2ax1 − a2 + 2bx3 − b2
)
(1 − cosφ)+ 2x1 sin φ + cosφ + 1

.

(2.8)

The extension to general image projective transformations is straightforward.
We can see in Figure 2 (A) the image projective transformation of a single vertical

bar [shown in Section 6.2 in Figure 3 (A)] under (2.7) with φ = 30◦ and in Figure 2 (B)
the image corrected for conformal distortions by using (2.8).

FIGURE 2 Correcting the conformal lens optics of the camera.
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2.4 The Conformal Camera and Computational Vision

The cameras used in machine vision, including the most common pinhole camera,
involve 3 × 4 real matrices describing the composed effect of the projection of the space
points on the image plane and the corresponding transformations between the space and
the image plane coordinates. See [25] for their classifications in terms of the corresponding
3 × 4 matrices. These cameras are used to extract geometric information from scenes, such
as projective invariants [19], and based on this information, to acquire a 3-D understanding
of the scenes. However, the set of 3 × 4 matrices describing a particular camera does not
form a group, which is a major obstacle in developing a group theoretical approach to image
representation that is well adapted to image transformations produced by the camera. On the
other hand, the conformal camera as introduced and discussed in the previous parts of this
section, is characterized by the image projective transformations given by the action of the
group SL(2,C) on the points of the image plane. This group action has a well understood
harmonic analysis, a sophisticated computational framework for developing projectively
adapted image processing tools. In particular, the conformal camera is formulated for
planar images, or patterns and most of man made objects contain identifiable piece of a
planar surface which is enough to use the projective convolutions to recognize 3-D objects
in dynamic scenes.

Despite the fact demonstrated later in Section 6, that the projective Fourier analysis
based on the conformal camera, provides image processing tools for digital cameras with
the human-like visual sensor architecture (Section 6.2), (DPFT and biologically motivated
machine vision), the conformal camera is less intuitive than cameras that have been used
in computer vision. However, it passes the following fundamental property: It reduces the
degrees of freedom by identifying those perspective transformations for which different
objects have the same perspective projection. It can be understood from Figure 1 (A) by
examining how image projective transformations are generated and extending the projecting
rays into the visual field on the left of the camera. Further, those remaining degrees of
freedom are the once that are relevant for the biological visual systems. It follows from the
observation that such systems employ mostly different strategies than the purely geometric
strategies that use, say, projective invariants, in gaining the understanding the 3-D word
from 2-D images.

More precisely, if we examine a biological visual system such as the human visual
system, we realize that the eye (the camera with almost spherical image surface) does not
“see” the visual field that is centrally projected on its retina, as it contains photoreceptor
cells with chemicals that release energy when struck by light. The ganglion cells of the
retina, after pre-processing the retinal image, transmit the visual information (variation in
released energy) by way of the optic nerve to the lateral geniculate nucleus (LGN) of the
thalamus. From there, the LGN axons fan out further it through the deep white matter of
the brain as the optic radiations to the primary visual cortex, an area in the visual cortex
on the back of the brain. The highly structured topographic arrangement of axons along
the visual pathway (called the retinotopic mapping) with the nonuniform distribution of
photoreceptors in the retina with the highest density at the fovea which decreases toward
the periphery, on one hand side, and a constant density of neural cells in the visual cortex, on
the other, produce the cortical image showing a dramatic distortion of the visual field with a
significant magnification of the foveal region. The brain processes this visual information
by dividing and sending it further along two streams: (1) a medial, “Action,” or “Where”
stream which is concerned with the spatial relationship between objects for the unconscious
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guidance movement and, (2) a lateral “What” stream which is concerned conscious object
recognition and perception. The Action/Where stream gets its input from the periphery
retina. However, it is the What stream that gets its input primarily from the foveal region
and (among many other things, not all fully understood) extracts many visual cues about the
3-D word from 2-D images, such as the depth cues from binocular disparity and monocular
motion parallax, and “sees” the coherent image [15].

It has been evidenced by Eric Schwartz in [23] that the retinotopic mapping can
be described by a complex logarithm. Subsequently he proposed different logarithmic
functions, notably ln(z + a) and ln ((z+ a)/(z+ b)). However, the retinotopic mapping
varies across species and therefore, to model the aspects of peripheral vision with the correct
cortical magnification of the foveal region, it could be represented simply by ln z. It follows
that rotations and scale changes of a pattern correspond under the retinotopic mapping to
the cortical translations viz.: ln

(
ρeiαreiθ

)
corresponds to (ln r+ ln ρ, θ+α). In the visual

pathway without the retinotopic mapping, the brain must have much bigger size (at least
5000 lb. by Schwartz estimate [24]) in order to process all the visual information reaching
the eye.

Using the projective Fourier analysis constructed in Section 5, we demonstrate later
in Section 6, that the digital data model developed upon harmonic analysis of the conformal
camera provides the efficient computational framework for the initial stage by which the
brain processes visual information that is carried from the retina of the eye to the primary
visual cortex. This follows from the fact that in log-polar coordinates (ln r, θ) (identified
with the principal complex logarithm ln z = ln

(
reiθ

) = ln r + iθ ), the projective Fourier
transform of a pattern takes on the standard Fourier integral form, and therefore, it can be
computed efficiently by 2-D FFT. In order to apply FFT, the pattern must be re-sampled
with nonuniform log-polar sampling geometry (pixels of retinal image) and expressed in
the log-polar coordinate plane with uniform (rectangular) sampling geometry (pixels of
cortical image), see [30].

3. Analysis on SL(2,C)

Both Iwasawa and Gauss decompositions of semisimple Lie groups play important roles
in the construction of induced representations of such groups in general, and of the group
SL(2,C) in particular. To this end, in addition to the subgroups SU(2), A, and Ñ, we also
need the subgroup N = {(1 γ

0 1

) | γ ∈ C
}
.

3.1 Iwasawa Decomposition

We want to write any g = (
α β
γ δ

) ∈ SL(2,C) in the form g = kan with k ∈ SU(2),
a ∈ A and n ∈ N. This is given as follows:

g =
 α√

|α|2+|γ |2
−γ√

|α|2+|γ |2
γ√

|α|2+|γ |2
α√

|α|2+|γ |2


√

|α|2+|γ |2 0

0 1√
|α|2+|γ |2

( 1 αβ+γ δ
|α|2+|γ |2

0 1

)
, (3.1)

which shows its uniqueness. Further, we see from (3.1) that the multiplication map

SU(2)× A × N → SL(2,C), (k, a, n) �→ kan
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is a diffeomorphism onto.
The decomposition SL(2,C) = SU(2)AN is called the Iwasawa decomposition of

SL(2,C). If g ∈ SL(2,C) decomposes under SU(2)AN, we write g = k(g)a′(g)n.

3.2 Gauss Decomposition

For each element g = (
α β
γ δ

) ∈ SL(2,C) we have one of the two cases: α 	= 0,

or α = 0. If α 	= 0, then we can write g = ( 1 0
γ /α 1

)( α β

0 α−1

)
where we used that

αδ−βγ = 1. If α = 0, then g = ( 0 1
−1 0

)(
β−1 −δ
0 β

)
. Then introducing the Borel subgroup

B = {( α β

0 α−1

) | α ∈ C∗, β ∈ C
}

of SL(2,C), we can write that for any g ∈ SL(2,C)

either g ∈ ÑB, or g ∈ pB where p = ( 0 1
−1 0

)
. Thus,

SL(2,C) = ÑB∪pB . (3.2)

Further, since

b =
(
α β

0 α−1

)
=
(

α
|α| 0

0 |α|
α

)( |α| 0

0 1
|α|

)(
1 β

α

0 1

)
, (3.3)

we see that the Borel subgroup B factors as B = MAN, with both N and AN normal in B.
Using it and (3.2), we arrive at Gauss decomposition

SL(2,C) .= ÑMAN (3.4)

where “
.=” means that equality holds except a lower dimensional subsetpB of the invariant

measure 0. The map

Ñ × M × A × N → SL(2,C), (̃n,m, a, n) �→ ñman

is a diffeomorphism. If g decomposes under SL(2,C) .= ÑMAN, we write g
.= ñ(g)m(g)

a(g)n.

3.3 The Modular Function on the Borel Subgroup

Every Lie group G carries both left and right invariant measures: dl(hg) = dl(g) and
dr(gh) = dr(g) for all h ∈ G. Since they vanish on the same null sets, there is a measur-
able function, called the modular function, G : G →R+ such that drg = G(g)dlg.
If G = 1, the group is unimodular. The group SL(2,C) is unimodular and its in-
variant measure can be expressed as follows: If g = (

α β
γ δ

) ∈ SL(2,C), then dg =
(1/|δ|2) dβ dβ dγ dγ dδ dδ, where, if β = x + iy, then (i/2) dβ dβ = dx dy. This is not
defined on the set of measure zero where δ = 0. The Borel subgroup B ⊂ SL(2,C) is not
unimodular: If b = ( α β

0 α−1

) ∈ B, dlb = (i/2)2(1/|α|4) dα dα dβ dβ and drb = |α|4dlb.

Thus, the modular function on B is B
(( α β

0 α−1

)) = |α|4.

4. The Principal Series Representations of SL(2,C)

4.1 Induced Representations

To describe the method of inducing representations, we let K be a closed subgroup of a
Lie group G, both assumed unimodular with the invariant measures dk and dg, respectively.
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Also, we assume that G = KP with a closed subgroup P, such that the map (k, p) �→ kp of
K × P → G is a bijection. Then the homogeneous (right coset) space G/P is diffeomorphic
to K on which G operates on the left.

Further, we let � be a representation of P on a Hilbert space V and V� be the space
of continuous mappings f : G →V satisfying the condition

f (gp) = P(p)
−1/2�(p)−1f (g), g ∈ G,p ∈ P (4.1)

where P is the modular function on P. It shows that f is determined by its restriction to
K and we can define the norm of f by

||f ||2 =
∫

K
|f (k)|2 dk . (4.2)

Finally, the representation U� of G on V� is given by the left regular action U�(g)
f (x) = f (g−1x). The actual representation U� and the Hilbert space is obtained by
completion in the L2-norm in (4.2). U� is called the induced representation of � to G.
The factor P(p)

−1/2 in (4.1) unitarizes the induces representation. In fact, one has the
following result [17].

Proposition 1. If the representation � is unitary, then the induced representation U� is
unitary.

4.2 Inducing Representations of SL(2,C)

In this section we apply the method of induction outlined in the previous section to
obtain unitary representations of the group SL(2,C), referred to as the principal series of
SL(2,C). We start with the following fact about the Borel subgroup B = MAN: Every
finite-dimensional unitary irreducible representation of B is of the form [21]

�(man) = �l(m)�s(a) =
(
α

|α|
)l

|α|is , l ∈ Z, s ∈ R , (4.3)

where man is given in (3.3). These one-dimensional representations are the characters of
the Borel subgroup.

Next, following the general method of the previous section, we defined the action

T �(g)f (x) = f
(
g−1x

)
(4.4)

on the space

V� =
{
f ∈ C(SL(2,C)) | f (gman) = �(man)−1B(man)−1/2f (g)

}
(4.5)

whereB(man) = |α|4 is the modular function on B ⊂ SL(2,C). Explicitly, any f ∈ V�
satisfies the conditions

f (gman) = |α|−is−2
(
α

|α|
)−l

f (g), l ∈ Z, s ∈ R . (4.6)

Further, Iwasawa decomposition shows that any f ∈ V� is determined by the restric-
tion f |SU(2) and that the actual Hilbert space and unitary representations are obtained by
completion in the norm (4.2) with K = SU(2). In this realization of unitary representations,
the action (4.4) is simple but the representation space (4.5) is complicated.
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4.3 Noncompact Picture of Induced Representation

The noncompact picture is the realization of induced representations obtained by
restricting functions in (4.5) to the subgroup Ñ. It will be used to construct the noncompact
model of projective Fourier analysis particularly accessible to analytical and fast numerical
methods. A dense subspace of the representation is

V� =
{
f ∈ C (Ñ) | f (nman) = �(man)−1B(man)−1/2f (̃n)

}
(4.7)

and the restriction is one-to-one because, by Gauss decomposition, the set ÑMAN exhausts
SL(2,C) except for a measure zero set. In this picture, SL(2,C) acts on V� as follows: If
g = (

α β
γ δ

) ∈ SL(2,C) then

T �(g)f (̃n) = f
(
g−1ñ

)
= f

(
ñ
(
g−1ñ

)
m
(
g−1ñ

)
a
(
g−1ñ

)
n
)

= | − βz+ δ|−is−2
( −βz+ δ

| − βz+ δ|
)−l

f

((
1 0

αz−γ
−βz+δ 1

))
. (4.8)

The next proposition, the proof of which follows an important technique in repre-
sentation theory of semisimple Lie groups explained in detail in [17] on p. 140–141, says
that the norms of L2(SU(2), dk) and L2(Ñ, dñ) are preserved in passing from the induced
picture to the noncompact picture.

Proposition 2. For any f ∈ C(SU(2)) that is right invariant under M, that is, for any
f ∈ C(SU(2)/M), we have that∫

SU(2)
|f (k)|2 dk =

∫
Ñ

∣∣f (̃n) ∣∣2 dñ .
4.4 Compact Picture of Induced Representations

The compact picture is obtained by restricting the induced picture to SU(2). More
precisely, one starts with f ∈ C(SU(2)/M) and extends it to a function on SU(2) by
f (κm) = �(m)−1f (κ). Here a dense subspace of the representation is

V� =
{
f ∈ C(SU(2)) | f (km) = �(m)−1f (k)

}
(4.9)

with norm (4.2). The restriction is one-to-one since Iwasawa decomposition, SL(2,C) =
SU(2)MAN, implies that SL(2,C)/B = SU(2)/M as a homogeneous space of SU(2).

Now, if g decomposes under SU(2)MAN as

g = κ(g)µ(g)a′(g)n , (4.10)

then κ(g) ∈ SU(2)/M ∼= S2. We have that κ(g) = k(g)M = gMAN in SL(2,C)/B where
k(g) is given by Iwasawa decomposition g = k(g)a′(g)n in (3.1). Using (4.6) and (4.10)
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in (4.4), we obtain

T �(g)f (k) = f
(
g−1k

)
= �s

(
a′(g−1k

))−1
B

(
µ
(
g−1k

)
a′(g−1k

)
n
)−1/2

×�l

(
µ
(
g−1k

))−1
f
(
κ
(
g−1k

))
(4.11)

where�l and�s are given for the corresponding subgroups as in (4.3). This picture seems
to be to complicated to construct a feasible (in image processing) model of projective Fourier
analysis. However, since the representation space does not depend on s, the compact picture
is useful to study the reduction of g �→ T �(g) to the subgroup SU(2). We will use it to
construct the compact model of projective Fourier analysis.

5. Projective Fourier Analysis

Projective Fourier analysis is developed in the framework of representation theory of
semisimple Lie groups by constructing the two realizations, the noncompact and the com-
pact models.

5.1 Noncompact Realization of the Projective Fourier Analysis

The condition (4.6) implies that f must be N-invariant, and therefore, it can be written
as a function on C2\{0} (denoted by F ) as follows: F

(
z1
z2

) = F
((
z1 β
z2 δ

)(1
0

))
. In the group-

theoretic formalism, the group N is the isotropy group of
(1

0

) ∈ C2\{0}, implying that
C2\{0} is isomorphic to the homogeneous space SL(2,C)/N.

We verify that f ∈ V�, if and only, if the corresponding F on SL(2,C)/N satisfies

F

((
λz1
λz2

))
= λmλ

n
F

((
z1
z2

))
= |λ|is−2

(
λ

|λ|
)k
F

((
z1
z2

))
where m = (1/2) (k + is) − 1 and m = (1/2) (−k + is) − 1. Thus, we can write,
F
(
z1
z2

) = |z1|is−2 (z1/|z1|)k � (z2/z1) where �(z) = F
(1
z

)
. At this point we are dealing

with homogeneous functions F on C2\{0}, the space of functions on which the irreducible
representations of SL(2,C) were originally constructed in [9]. Now the principal series
in (4.8) takes on the form

T �� (z) = | − βz+ δ|−is−2
( −βz+ δ

| − βz+ δ|
)−k

�

(
αz− γ

−βz+ δ

)
,

which extends to the principal series representation of SL(2,C) on L2 (C).

Projective Fourier transform.

For a given pattern’s intensity function f (z) we place it on the image plane z1 = 1 of the
conformal camera by writing h

((1
z

)) ≡ f (z), and extend continuously to a subset of C2

along the complex lines as follows: h
((
ξ
ξz

)) = |ξ |−1f (ξz). First we note that the action of
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SL(2,C) on h given by h
(
g−1

(
z1
z2

))
induces the projective transformation f (g−1 · z) of the

pattern f [26]. Next, we define functions

F

((
z1
z2

))
= i

2

∫
h

((
µz1
µz2

))
|µ|−is

(
µ

|µ|
)−k

dµ dµ

and verify that F is in the representation space V�. We express this F in terms of pattern’s
intensity function f and denote by �(z; k, s) its restriction to the image plane. Then,
changing variable ξ = µz yields �(z; k, s) = |z|is−1 (z/|z|)k f̂ (s, k) where

f̂ (s, k) = i

2

∫
f (ξ)|ξ |−is−1

(
ξ

|ξ |
)−k

dξ dξ (5.1)

is the projective Fourier transform (PFT) of the pattern f . In log-polar coordinates (u, θ)
given by ξ = eu+iθ , f̂ (k, s) has the form of the standard Fourier integral. Inverting it
(see [26]), we get the inverse projective Fourier transform

f (z) = 1

(2π)2

∞∑
k=−∞

∫
f̂ (s, k)|z|is−1

(
z

|z|
)k

ds . (5.2)

Further, the usual Plancherel’s theorem gives the following projective counterpart of it:

i

2

∫
|f (z)|2 dz dz = 1

(2π)2

∞∑
k=−∞

∫ ∣∣f̂ (s, k)∣∣2 ds .
We see that the inverse projective Fourier transform provides decomposition in terms of the
characters |z|is (z/|z|)l of the Borel subgroup B with the coefficients given by the projective
Fourier transform. We note that the Gauss decomposition SL(2,C) .= ÑB implies that B
exhaust the “projective” part of SL(2,C) as Ñ ∼= C, represent translations in the image
plane. It should be seen in the light of the fact that all nontrivial unitary representations of
the group SL(2,C) are infinite-dimensional [9], as opposed to the fact we have mentioned
before that all finite-dimensional irreducible unitary representations of the Borel group B
are in fact one-dimensional.

The convolution in noncompact picture is defined on the subgroup MA by

f1 ∗ f2(z) = i

2

∫
f1(ξ)f2

(
g−1 · z)dξ dξ|ξ |2 (5.3)

where g = (
δ−1/2 0
0 δ1/2

)(
e−iϕ/2 0
0 eiϕ/2

)
and ξ = δeiϕ . Then, taking the projective Fourier trans-

form of the convolution (5.3) and changing the variable by η = ξ−1z, we easily obtain the
convolution property: f̂1 ∗ f2(k, s) = f̂1(k, s)f̂2(k, s).

5.2 Compact Realization of Projective Fourier Analysis

Recall that the compact realization is constructed by using the compact picture of
induced representation with the action (4.11) reduced to the subgroup SU(2). This reduction
problem can be formulated as follows (see also [1] for a more general discussion).
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Proposition 3. If T � is an irreducible representation of SL(2,C) induced from an
irreducible representation� of the Borel subgroup B, and R is an irreducible representation
of SU(2), then R is in T �

SU(2) (the restriction of T � to SU(2)) with multiplicity one.

We recall that in the compact picture a dense subspace of the representation space
is (4.9) with norm (4.2) and the action of induced unitary representations of SL(2,C) is
given in (4.4). It reduces to the following action

T �l,s
SU(2)(k)f (k1) = f

(
k−1k1

)
= �l

(
µ
(
k−1k1

))−1
f
(
κ
(
k−1k1

))
, f ∈ V� .

Here for any k ∈ SU(2) we have the factorization k = κ(k)µ(k) where κ(k) = kM ∈
SU(2)/M and µ(k) ∈ M. It shows that f ∈ V� is determined by f |SU(2)/M and that
||f (kM)|| = ||f (k)||.

In the remaining part of this section, we discuss the relation between SU(2)/M and
SO(3)/SO(2) in the context of the conformal camera and, then we construct the compact
realization of projective Fourier analysis. Finally, we prove Proposition 3.

The relation between SU(2)/M and SO(3)/SO(2).

Using the universal double cover SU(2) of SO(3), used in Section 2.3 to get the conformal
camera model shown in Figure 1, we have the diagram

SU(2)
�→ SO(3)

π1 ↓ ↓π2

P 1(C)
σ→ S2

(0,1,0)

(5.4)

where π1 and π2 are the projections onto the quotient spaces SU(2)/M ∼= P 1(C) and
SO(3)/SO(2) ∼= S2

(0,1,0), respectively. The mapping σ : P 1(C) → S2
(0,1,0) is the inverse

of the stereographic projection (2.3), given explicitly by

σ(z) =
(

2 Im z

|z|2 + 1
,

2

|z|2 + 1
,

2 Re z

|z|2 + 1

)t
= (y1, y2, y3)

t

and σ(∞) = (0, 0, 0)t . We note that (y1)
2 + (y2 − 1)2 + (y3)

2 = 1.
By a straightforward calculation we can obtain the relation �(k) ◦ σ = σ ◦ k, k ∈

SU(2). This can be verified by writing both sides in explicit terms. On one hand side, we
have σ ◦ k(z) = σ

(
k(ψ, φ,ψ ′) · z) = (y′

1, y
′
2, y

′
3)
t where k(ψ, φ,ψ ′) in (2.4) gives the

linear fractional action:

k
(
ψ, φ,ψ ′) · z =

cos
(
φ
2

)
e−i(ψ+ψ ′)/2z+ i sin

(
φ
2

)
e−i(ψ−ψ ′)/2

i sin
(
φ
2

)
ei(ψ−ψ ′)/2z+ cos

(
φ
2

)
ei(ψ+ψ)/2

.

On the other hand, side, �(k(ψ, φ,ψ ′)) ◦ σ(z) = (y′
1, y

′
2, y

′
3)
t where �(k(ψ, φ,ψ ′)) =

R(ψ, φ,ψ ′) acts on S2
(0,1,0) i.e.,

�
(
k
(
ψ, φ,ψ ′)) ◦ σ(z) = R

(
ψ, φ,ψ ′) [σ(z)− (0, 1, 0)t

]+ (0, 1, 0)t .

Thus, (y′
1)

2 + (y′
2 − 1)2 + (y′

3)
2 = 1.

In conclusion, the diagram (5.4), represent a homomorphism of homogeneous spaces,
P 1(C) ∼= SU(2)/M and S2

(0,1,0)
∼= SO(3)/SO(2).
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Projective Fourier transform.

It follows from the homomorphisms � and σ in (5.4), and the spherical harmonic analy-
sis [6], that the regular representation of the group SU(2) on L2 (SU(2)/M, dk) where dk
is the SU(2)-invariant measure on SU(2)/M, is a direct sum of representations D(l) ◦ �;
l ∈ N where D(l) (corresponding to D(l) in [6]) are irreducible unitary representations of
SO(3), with each D(l) ◦ � occurring only once in this sum. The standard fact is that the
representation R(l) of SU(2) defines a representation D(l) of SO(3) by means of formula
D(l) ◦ � = R(l), if and only, if l is an integer. Thus, the harmonic decompositions of
functions on P 1(C) ∼= SU(2)/M should be given with respect to the projective harmonics
Yml ◦ σ on P 1(C), where Yml are spherical harmonics given in Equation (1) in [6].

To this end, we note that the subgroup M of elements m
(ψ

2

) = (
e−iψ/2 0
0 eiψ/2

)
is the

isotropy group at 0 ∈ C and its action on the image plane C (an open affine patch of Ĉ)
consists of rotations of angle ψ about the origin. Further, the subgroup K of elements
k
(φ

2

) = (cosφ/2 i sin φ/2
i sin φ/2 cosφ/2

)
moves the point 0 of C along the positive imaginary axis for

0 ≤ φ < π . Thus, we have the parametrization of the image plane by the polar coordinates,
z = tan φ

2 e
iψ , expressed in terms of the Euler angles.

Using this, we can find the relation between the rotational-invariant measures dω
on S2

(0,1,0) and the SU(2)-invariant measure d� on C. Indeed, for the measure dω =
sin φ dφ dψ on S2

(0,1,0), its pullback σ ∗(dω) by the mapping σ : C → S2
(0,1,0) is a measure

on C. A straightforward calculation, using the relation z = tan φ
2 e
iψ , gives d�(z) =

σ ∗(dω) = 2i
(
1 + |z|2)−2

dz dz, which has the desired invariance property, d�(g−1 · z) =
d�(z), g ∈ SU(2).

The projective harmonics, Zml (z) = Yml ◦ σ(z), are now expressed on C as follows:

Yml ◦ σ (reiϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)! Pml

(
1 − r2

1 + r2

)
eimϕ, z = reiϕ

where l ∈ N, −l ≤ m ≤ l. Choosing the basis of 2l + 1 spherical harmonics Yml ,
−l ≤ m ≤ l for each l ≥ 0 gives an orthonormal basis Zml (z); −l ≤ m ≤ l, for all of
L2(C, d�).

Now, by analogy with the harmonic analysis in L2 (SO(3)/SO(2), dω), we obtain
the decomposition of f ∈ L2(C, d�) in the orthonormal basis provided by the projective
harmonics in the form

f (z) =
∑
l∈N

∑
|m|≤l

f̂ (l, m)Zml (z) (5.5)

where the coefficients f̂ (l, m) of the decomposition are given by the Fourier transform

f̂ (l, m) =
∫
C

f (z)Z
m

l (z)2i
(

1 + |z|2
)−2

dz dz . (5.6)

We call (5.6) the projective Fourier transform in compact picture. Its inverse trans-
form is given in (5.5). Using the following notation: R(l) = (

R
(l)
m,k

)
, D(l) = (

D
(l)
m,k

)
,

R
(l)
m,k = D

(l)
m,k ◦ � and ω = σ(z), and the fact that the representation D(l) is unitary,

that is, D
(l)

k,m(R) = D
(l)
m,k(R

−1), the projectively covariant characteristics of the harmonic
decomposition of the function f (z) in the basis Zml (z) is demonstrated in the next theorem,
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which can be proved along similar lines of the corresponding proof given for spherical
harmonic analysis in [6].

Theorem 1. The decomposition

f (z) =
∑
l∈N

∑
|m|≤l

f̂ (l, m)Zml (z)

under the projective transformation R(g) f (z) = f (g−1 · z) transforms as follows

R(g)f (z) =
∑
l∈N

∑
|k|≤l

∑
|m|≤l

f̂ (l, m)R
(l)

m,k

(
g−1)Zkl (z)

where for each l ∈ N

R(l)(g) = D(l) ◦�(g) (5.7)

with D(l) (corresponding toD(l) in [6]) and� in (5.4), is the irreducible unitary represen-
tation of SU(2) on the Hilbert space Wl = {

Zml (z) : l ∈ N,−l ≤ m ≤ l
}

with the inner
product

〈f, h〉 =
∫
f (z)h(z)2i

(
1 + |z|2

)−2
dz dz .

The Plancherel formula here takes on the following form:

||f ||2
L2(C,d�)

=
∞∑
l=0

∑
|m|≤l

∣∣f̂ (l, m)∣∣2 ,
which says that the mappingf (z) �−→ f̂ (l, m) is isometric with respect to the corresponding
norms.

For two functions f1 and f2 on C the operator of left convolution by f1 is defined by

Cf1f2(z) =
∫

SU(2)
f1(g · 0)R(g)f2(z) dg

=
∫

SU(2)
f1(g · 0)f2

(
g−1 · z) dg = f1 ∗ f2(z) . (5.8)

Since the operators R(g) are simultaneously block-diagonalized for all g ∈ SU(2)
in the projective harmonic basis Zml (because D(l) are simultaneously block-diagonalized
in the basis Yml ), therefore the convolution operator Cf1 obtained as linear combination
of them must be block-diagonalized as well. An explicit statement of this is given in the
next theorem. A proof involves the relation between R(l)(g), D(l)(g) and � stated before
Theorem 1 and otherwise can be done along the same lines as the corresponding proof for
spherical Fourier analysis in [6].

Theorem 2. The convolution property

f̂1 ∗ f2(l, m) = 2π

(
4π

2l + 1

)1/2

f̂1(l, m)f̂2(l, m) (5.9)

is satisfied.
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The reduction problem for the compact picture.

To prove Proposition 3, we use the compact picture of induced representations of SL(2,C).
To this end, we let

�k,s(b) = �k (µ(b))�s
(
a′(b)

) = eikϕ |ρ|is , b =
(
ρeiϕ β

0 ρ−1e−iϕ
)

∈ B

be the unitary representation of B = MAN. An irreducible representation R(l) of SU(2),
determined by l where 2l = 0, 1, 2, . . . , is expressed with respect to the basis of the
projective harmonics Znl , n = −l,−l + 1, . . . , l − 1, l. In the Euler angle parametrization
introduced in Section 2.3, m(ψ/2) ∈ M corresponds to the rotation around x2-axis by
the angle ψ . Hence, R(l) (m (ψ/2)) Znl = exp(−inψ)Znl , and every representation ψ �→
exp(−inψ) of M appears with multiplicity one. Consequently, R(l) reduced to M, that is,
R(l)

M contains (�M)k,s = �k , if and only, if k is one of the numbers l, l− 1, . . . ,−l. Thus,
l ≥ k, the representation R(l) enters T �

SU(2) with the multiplicity one, i.e.,

T �
SU(2) =

⊕
l≥|k|

R(l) (SU(2)) .

It proves Proposition 3.

6. Applications in Computational Vision

In this section we discuss analytical aspects of the data model of the digital image represen-
tation based on the noncompact projective Fourier transform and some of its applications in
computational vision, both in biology and computer science. We also mention the uses of
projective convolutions to perform tasks of perspectively-invariant pattern matching. We
start with the derivation of the discrete projective Fourier transform.

6.1 The Discrete Projective Fourier Transform

In log-polar coordinates (u, θ) given by z = eueiθ , (5.1) has the standard Fourier
integral form

f̂ (s, k) =
∫ 2π/L

0

∫ ln rb

ln ra
g(u, θ)e−i(us+θk) du dθ (6.1)

where the support of g(u, θ) = euf (eu+iθ ) is assumed to be contained within [ln ra, ln rb]×
[0, 2π/L] with L ∈ N. Extending g(u, θ) periodically g(u+mT, θ + 2πn/L) = g(u, θ),
where T = ln rb

ra
, it can be expanded in a double Fourier series (see [27]):

g(u, θ) = L

2πT

∞∑
m=−∞

∞∑
n=−∞

f̂ (2πm/T , nL) ei(2πmu/T+nLθ) .

Further, assuming

supp g̃ = supp f̂ ⊂ [−�,�] × [−�,�] (6.2)



OF18 Jacek Turski

(̃g is the Fourier transform of g) and approximating the integral in (6.1) by a double Riemann
sum with M × N partition points (uk, θl) = (ln ra + kT /M, 2πl/LN); 0 ≤ k ≤ M − 1,
0 ≤ l ≤ N − 1, we obtain

f̂ (2πm/T , nL) ≈ 2πT

LNM

M−1∑
k=0

N−1∑
l=0

g(uk, θl)e
−2πi(mk/M+nl/N)

where |m| ≤ �T/2π and |n| ≤ �/L. Following the discussion of the numerical aspects of
the approximation in [13], we obtain the expressions

f̂m,n =
M−1∑
k=0

N−1∑
l=0

fk,l e
uk e−i2πnl/Ne−i2πmk/M (6.3)

and

fk,l = 1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,ne
−uk ei2πnl/Nei2πmk/M (6.4)

where fk,l = (2πT/LMN)g(uk, θl)e−uk and f̂m,n = f̂ (2πm/T , nL). Both expres-
sions (6.3) and (6.4) can be computed efficiently by FFT algorithms.

Finally, on introducing zk,l = euk+iθl into (6.3) and (6.4) we arrive at the (M,N)-
point discrete projective Fourier transform (DPFT) and its inverse:

f̂m,n =
M−1∑
k=0

N−1∑
l=0

fk,l

(
zk,l

|zk,l |
)−nL

|zk,l |−i2πm/T+1 (6.5)

and

fk,l = 1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,n

(
zk,l

|zk,l |
)nL

|zk,l |i2πm/T−1 , (6.6)

now with fk,l = (2πT/LMN)f (zk,l). Its projectively adapted characteristics are ex-
pressed as follows:

f ′
k,l = 1

MN

M−1∑
m=0

N−1∑
n=0

f̂m,n

(
z′k,l∣∣z′k,l∣∣

)nL ∣∣z′k,l∣∣i2πm/T−1 (6.7)

where z′k,l = g−1 · zk,l , g ∈ SL(2,C) and f ′
k,l = (2πT/LMN)f (z′k,l).

6.2 DPFT in Digital Image Processing

DPFT has the standard Fourier integral form in the log-polar coordinate plane. There-
fore, in order to convert an analog image to the digital form and to display it in the image
(viewing) plane by computing its DPFT with FFT, we must re-sample the image so that
the sampling geometry in the log-polar coordinate plane consists equal rectangular samples
(pixels). We refer to it as the sampling interface.
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With the pattern domain contained within the set [ra, rb]× [0, 2π/L], the samples of
the log-polar sampling are obtained by taking the radial and angular partitions,

rk = rae
kδ1 , k = 0, 1, . . . ,M; αl = lδ2, l = 0, 1, . . . , N , (6.8)

respectively. Thus, the pixels are sectors that have fixed angular size with their radial size
increased logarithmically, see Figure 3 (A).

FIGURE 3 The sampling interface: (A) nonuniformly sampled retinal image, (B) uniformly sampled cortical
image.

The minimal rate of the log-polar sampling depends on the resolution of the image.
We require for our calculations that the upper right pixel is covered by one sector of the
log-polar partition whose area is approximately the area of the pixel, see Figure 3 (A). The
log-polar sampling geometry becomes again uniform with rectangular pixels δ1 ×δ2, shown
for clarity only in the left corner of Figure 3 (B). To determine δ1 and δ2, or equivalently
the resolution M × N , we assume that the pattern size in the image plane is A × A and
the pixels size is d × d . Then, a simple geometrical consideration using the radial partition
in (6.8) gives (see Figure 3) the following relations between dimensions of pixels: δ1 =
− ln(1 − d/rb) = (d/rb)− (d/rb)

2 + . . . , and δ2 = d/rb radians, where rb = ra + √
2A.

Because in practice d � rb, we can take δ1 = δ2 = δwhere δ = d/rb. Now, using (6.8), the
resolution M ×N of the image in log-polar coordinates is given by M = (rb/d) ln(rb/ra)
and N = πrb/(2d). For the bar pattern shown in Figure 3 (A) we take L = 4, A = 16,
ra = 0.5 and d = 1 (in units of pixels) and we obtain: δ = 0.04, M = 89 and N = 35.
However, the bar pattern in Figure 3 (B) has been rendered in the log-polar coordinate
plane, using the sampling interface algorithm, with an increased resolution of 300 × 300 to
smoothen pixel boundaries.

Band-limited images.

Often one can assume that a given pattern has a bounded spectrum, say [−ω,ω]×[−ω,ω].
The value ofω could be determined, for example, by the rate at which the (standard) Fourier
transform of the pattern is decaying for large spatial frequencies. The Nyquist condition
requires that the sampling distance d satisfies the relation d = π/ω in both the x- and
y-axis directions. Recalling that in the log-polar plane δ = T/M = 2π/LN , we have
M = ωrbT /π and N = 2ωrb/L, where T = ln rb

ra
. We can obtain the log-polar radial and

angular frequencies� and� [cf. (6.2)] corresponding to the spatial frequencyω by assuming
the Nyquist condition: δ = π/� = π/�. We conclude that � = � = (ra + √

2A)ω.
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Rendering digital image perspective transformations.

In this section we test the perspective covariance of the digital data model. However, in
applications one can work equally well with image projective transformations without re-
moving their conformal components. To simplify the discussion, we consider the subgroup
of image projective transformations of the form

z′m,n = g−1 · zm,n = zm,n cos φ2 − i sin φ
2

−izm,n sin φ
2 + cos φ2

. (6.9)

Under the transformations (6.9), the equally spaced points (um, θn) transform into nonuni-
formly spaced points (u′

m,n, θ
′
m,n) with the coordinates satisfying the equations

e2u′
m,n = e2um cos2 φ

2 + sin2 φ
2 − eum sin φ sin θn

e2um sin2 φ
2 + cos2 φ

2 + eum sin φ sin θn
(6.10)

and

tan θ ′
m,n = 1/2

(
e2um − 1

)
sin φ + eum sin θn cosφ

eum cos θn
. (6.11)

Finally, the coordinates (2.8) of the projectively transformed pixels can be used in a straight-
forward way to correct for conformal distortions of log-polar coordinates (u′

m,n, θ
′
m,n) given

in (6.10) and (6.11). Those corrected log-polar coordinates are denoted by (u′′
m,n, θ

′′
m,n), in

terms of which the conformal-distortion free inverse DPFT is given as follows

f ′′
m,n = 1

MN

M−1∑
k=0

N−1∑
l=0

f̂k,le
−u′′

m,nei2πu
′′
m,nk/T eiθ

′′
m,nlL . (6.12)

Here f ′′
m,n denotes the value f ′′

m,n given in (6.7) but taken at (u′′
m,n, θ

′′
m,n) such that

z′′m,n = x′′
3m.n + ix′′

1m.n = eu
′′
m,neiθ

′′
m,n

where x′′
3m.n and x′′

1m.n are given in (2.8).
Our tests of the perspective covariance are done by applying image projective trans-

formations to the pixel’s boundaries. In Figure 4, the deconformalized image projective
transformations of the bar pattern in Figure 3 (A) are displayed in the log-polar coordinate
plane for the two indicated values of φ in (6.9).

FIGURE 4 Deconformalized image projective transformations of the bar pattern in the log-polar plane.
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FIGURE 5 Image perspective transformations rendered in the image plane by using the sampling interface.

Next the outputs from the sampling interface algorithm, applied to the images in
Figure 4 are shown in Figure 5. We see in this figure the corresponding image perspective
(deconformalized image projective) transformations of the bar in the image plane.

The recent advances in nonuniform FFT (e.g., [7, 20]) allow the development of
efficient algorithms reconstructing f ′′

m,n from known f̂k,l by computing (6.12). However,
(6.12) gives image perspective transformations in the log-polar coordinate plane. There-
fore, to render them in the viewing image plane, the algorithm of the sampling interface
transforming the corresponding sampling geometries must be used again.

DPFT and biologically motivated machine vision.

This section should be read together with Section 2.4 where the relation between the con-
formal camera and the computational visual neuroscience has been emphasized. The re-
sampling from the image plane to the log-polar coordinate plane, referred to as the sampling
interface, provides a well-known example of the foveated—as it provides the mathematical
model of biological retina sensors—image representation used in certain computer vision
systems, see for example, [2, 22]. The data processing reduction and similarity invariance
advantages, of the log-polar sampling (Section 2.4) motivated the development of foveated
sensor architectures, called silicon retina, in machine vision systems consisting of moving
stereo camera head coupled with a hardware image processor and linked to the computer
performing the image analysis. However, due to the lack of image processing tools that are
explicitly designed for foveated vision, silicon retina sensors have not been widely used in
the machine vision systems [31]. Because the image processing based on DPFT naturally
involves the log-polar sampling, it is well adapted to both the retinotopic-like mapping of
the silicon retina image processor and the image perspective transformations of patterns.
We believe that it should provide the image processing tools needed for the biologically
motivated machine vision systems.

Perspectively-invariant pattern matching.

The discrete convolution in the noncompact model of projective Fourier analysis can be
computed efficiently by FFT. On the other hand, in the compact model of projective Fourier
analysis, the projective Fourier transform and convolutions could be computed by adapting
some of fast algorithms recently developed for spherical Fourier analysis. In analogy with
the problem of pattern matching in Euclidean geometry, by taking the convolution in the
compact model of projective Fourier analysis (the projective convolution over the double
cover of the group of 3-D rotations) of a photograph and a pattern, we can locate the pattern
in the photograph independent of its different perspective under rotations. Similarly, using
the convolution in the noncompact model of projective Fourier analysis, allows development
of an algorithm for pattern matching independent of similarity transformations.
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7. Conclusions

In this article, projective Fourier analysis—geometric Fourier analysis of the group SL(2,C)
that provides image projective transformations—is presented in the framework of represen-
tation theory of semisimple Lie groups. It consists of the two models, the noncompact and
the compact models of projective Fourier analysis, constructed in the noncompact and the
(reduced) compact pictures of induced unitary irreducible representations of SL(2,C), re-
spectively. The data model for digital image representation is developed and its analytical
properties are discussed in the framework of the noncompact discrete projective Fourier
transform (DPFT). This discrete projective Fourier transform has the form of the standard
Fourier integral in log-polar coordinates. Therefore, to convert analog images to the digital
form and compute their DPFT by FFT, the image must be re-sampled on the log-polar grid.
This log-polar geometry of sampling provides a foveated image representation that models
the retinotopic mapping of the brain’s visual pathway. Therefore, it supplies computational
framework to develop efficient algorithms for biologically motivated machine vision sys-
tems. The data model is also well adapted to the image transformations produced by the
changes in the perspective view of the same planar object, or pattern.

In conclusion, the digital data model of image representation developed in this article
is well suited to provide the image processing tools explicitly designed for the foveated
sensor architecture (silicon retina) of active vision systems. In particular, convolutions
properties in both models of projective Fourier analysis can be used to develop perspectively-
independent pattern matching algorithms. We note that due to the lack of elegant image
processing tools for foveated vision, silicon retina sensors have not been widely used in
machine vision systems.
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