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Abstract

Among all image transforms the classical (Euclidean) Fourier trans-
form has had the widest range of applications in image processing.
Here its projective analogue, given by the double cover group SL(2,C)
of the projective group PSL(2,C) for patterns, is developed. First, a
projectively invariant classification of patterns is constructed in terms
of orbits of the group PSL(2,C) acting on the image plane (with com-
plex coordinates) by linear-fractional transformations. Then, SL(2,C)-
harmonic analysis, in the noncompact picture of induced representa-
tions, is used to decompose patterns into the components invariant
under irreducible representations of the principal series of SL(2,C).
Usefulness in digital image processing problems is studied by pro-
viding a camera model in which the action of SL(2,C) on the com-
plex image plane corresponds to, and exhaust, planar central projec-
tions as produced when aerial images of the same scene are taken
from different vantage points. The projectively adapted properties
of the SL(2,C)-harmonic analysis, as applied to the problems in im-
age processing, are confirmed by computational tests. Therefore, it
should be an important step in developing a system for automated
perspective-independent object recognition.
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1 Introduction

Applications of noncommutative harmonic analysis have expanded at much
slower rate that those of the classical Fourier analysis on Rn, especially after
the fast algorithms for computing Fourier transforms have been developed.
Noncommutative harmonic analysis on the two-dimensional sphere S2, the
symmetric space of the rotation group SO(3), and non-Euclidean analogues
of Fourier series and integrals with many applications, are discussed in [21].
The problems of efficient computation of spherical harmonics, i.e., Fourier
transforms of functions on S2, with emphasis on applications in computer
vision, have been recently studied in [8]. Fourier transforms on discrete non-
commutative groups with efficient algorithms and suggestions for interesting
applications in statistics have been attacked in [6], [7] and [5].
In this article we develop a projective analogue of Fourier analysis and

show how it provides projectively adapted pattern representation by decom-
posing patterns in terms of their projective Fourier transforms.
The standard Fourier analysis provides important tools in signal and im-

age processing, used for example, in telecommunication (telephone and tele-
vision), in transmission and analysis of satellite images, and in medical imag-
ing (echography, tomography, and nuclear magnetic resonance). Recently, a
question of deficiency of the Fourier decomposition of aerial images has been
raised in [1].
The authors in [1] noted that the Fourier transform of the distorted image

under a linear transformation can be computed from the Fourier transform
of the original image by a simple rule, see [9]. However, when a central
projection or a Möbius transformation is applied, the relationship between
Fourier transforms of the original image and a distorted image is no longer
feasible.
They pointed out that a representation of images such that one has a

closed-form relation between the representations of the original image and
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its projective distortions is an important step in developing a system for
automated perspective-independent object recognition. Moreover, they con-
structed a variant of the Fourier transform by projecting Fourier basis func-
tions from the surface of a sphere onto an image plane, and then decomposing
an image with respect to this family of projected functions.
Motivated by this work, we show by constructing a camera model that

the orbit of a pattern under the group PSL(2,C) acting by linear-fractional
transformations on the (complex) image plane, contains all generic projective
distortions of the pattern. We use ”generic” to indicate that we have to
exclude some projections, for example, when the images of a pattern are
one-dimensional. They form a lower dimensional subset in the space of all
projective transformations between images.
Further, we develop a projective analogue of Fourier analysis. It is a

noncommutative, SL(2,C)-harmonic analysis on the complex line which de-
composes L2-space of functions (patterns’ pixel gray-level functions) into
irreducible invariant subspaces, that is, subspaces transforming under the ir-
reducible unitary representations of the principal series of SL(2,C). The main
results of the analysis are the projective analogue of the (Euclidean) Fourier
decomposition, given here in terms of characters of the Borel subgroup of
SL(2,C) with the coefficients of the decomposition given by the projective
Fourier transform, and the corresponding Plancherel’s theorem. Since the
group SL(2,C) is the double cover of PSL(2,C), this decomposition should
provide an important tool in a projectively adapted image processing. This
point is further discussed and confirmed by computer simulations at the end
of this article.
It seems that the projective harmonic analysis as developed in this work

has not been presented elsewhere, though, we use a well known methods in
its construction.
As it has been said (see the comments for Section 7 given on p. 546

in [11]), there is no royal road through contemporary semisimple harmonic
analysis, including infinite-dimensional representation theory, since most treat-
ments and surveys are highly abstract and technical. However, we refer to a
constructive approach given in [10], and to an overview based on examples
in [13], as well as [22]. Nontechnical expositions with a historical perspective
can be found in [11] and [15].
The choice of presentation of the subject is made here to bridge as much

as possible the gap between abstract theories of group representation and
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noncommutative harmonic analysis, and the computer vision and pattern
analysis communities. In particular, we will stress in the construction given
here the relation between the projective Fourier transform and the classical
(Euclidean) Fourier transform.

2 Transformation groups in machine vision

2.1 Projective geometry in vision

Euclidean group acting on the points of space consists of the group of rigid
motions of objects in space. An image of an object is its planar central
projection, i.e., a projection on some image plane along rays intersecting at
a given point (called the center of a projection) that is not on the plane.
These projections are called perspective projections. Intuitively, the set of
all perspective projections of a three-dimensional space consists of a two-
dimensional projective space. Any two such images are related by a projective
transformation, also called a homography.
The definition of a finite dimensional projective space in this context is

the following.

Definition 1 Let V be a vector space over the field K. The projective space
derived from V, denoted by P (V ), is the quotient of V \ 0 by the equivalence
relation ”x ∼ y if and only if y = λx for some λ ∈ K”. The dimension of
P (V ) is dimV − 1. The canonical projection is p : V \0→ P (V ).

A projective space is called real if K = R, and complex if K = C.

Example 2 For every integer n ≥ 1, P n(K) = P (Kn+1) is called the stan-
dard projective space of dimension n over the field K.

If we take a basis {ei}i=1,..,n+1 of V , then every x ∈ V has the representa-
tion (x1, .., xn+1) with respect to this basis. Moreover, every point y ∈ P (V )
is of the form y = p(x1, .., xn+1) where p is the canonical projection. The
homogeneous coordinates of the point y ∈ P (V ) (with respect to the basis
{ei}i=1,..,n+1) is any set (λx1, .., λxn+1) with some λ ∈ K∗ = K\0 and fixed
x1, .., xn+1.
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Definition 3 Let P (V ) and P (V 0) be projective spaces. A projective trans-
formation, or a homography is the map g : P (V )→ P (V 0) satisfying g ◦ p =
p ◦ f where f : V → V 0 is an isomorphism of vector spaces.

Projective transformations P (V ) → P (V ) form a group under composi-
tion of maps, called the projective group and denoted by PSL(V ). There is
a group isomorphism (see, [3])

PSL(V ) ∼= GL(V )/K∗Id. (1)

We give now the explicite calculation of (1) for the complex projective line
P 1(C) and latter we will demonstrate in Theorem 7 and Corollary 8 the
relevence of P 1(C) to machine vision problems.
The equivalence relation ”x ∼ y if and only if y = λx for some λ ∈ C” in

Definition 1 in the case of the projective space P n(C), implies that the points
of the projective line P 1(C) = P (C2) can be identified with the slopes of the
lines z2 = µz1 in C2 if we add one extra ’slope’, denoted by ∞, for the line
z1 = 0. The point∞ is called the point at infinity. Note that the set of lines
z2 = µz1 (i.e., slopes) forms an open affine patch C in P 1(C). The procedure
of adding the point at infinity is referred to as the projective completion of
an affine space.
However, the definition of a projective space given above treats all points

of P 1(C) on equal footing. Therefore, if one removes from C2 any line l pass-
ing through the origin, one will get a natural affine structure on P (C2)\P (l).
Now blending the idea of homogeneous coordinates with the idea of con-

structing affine patches, we take the canonical basis {e1, e2} of C2 (i.e.,
e1 = (1, 0) and e2 = (0, 1)) and define the line li = z−1i (0). The points
of Hi = P (C2)\P (li) are those whose homogeneous coordinates (z1, z2) sat-
isfy zi 6= 0. Now, Hi is isomorphic to the hyperplane z

−1
i (1) = Hi + ei which

has an affine frame fi = {ei} ∪ {ei + ej}j 6=i. Then, in the affine frames fi
(i = 1, 2) the charts P (C2)\P (li) are given by

π1 : P (C2)\P (l1) 3 p(z1, z2) 7−→
z2
z1
∈ C

and
π2 : P (C2)\P (l2) 3 p(z1, z2) 7−→

z1
z2
∈ C

respectively.
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Thus, the complex projective space P 1(C) can be regarded as the Rie-
mann S2 sphere which is obtained by gluing together two copies of C by the
map ξ 7−→ 1/ξ on C∗.
The complex projective space P 1(C) can be also regarded as the one-point

compactification of C, denoted by bC = C ∪ {∞}. In fact, the stereographic
projection from, for example, the north pole of the sphere S2, with the north
pole projected on ∞ shows that P 1(C) = bC.
We conclude this discussion by expressing the projective transformations

g : P 1(C)→ P 1(C) in the local chart π1 we have introduced above. Using
(1), we can write the matrix of g in the canonical basis {e1, e2} of C2 as

M(g) =

µ
a b
c d

¶
where complex numbers a, b, c, and d satisfy detM(g) = ad− cb 6= 0. Then,
a simple calculation gives

π1 ◦ g ◦ π−11 : ξ 7−→ dξ + c

bξ + a
. (2)

In conclusion, we can assume that M(g) ∈ PSL(C2) since it follows from
(2) that both ±1

detM(g)
M(g) and M(g) give the same orbit of ξ ∈ C.

2.2 The Euclidean group acting on R3

We start with Euclidean group E = SO(3)
.
× R3. It is a semidirect product

of the special orthogonal group SO(3) (the group of all 3× 3 real matrices
with determinant 1), and the additive group R3. The group operation is the
following

(R1, b1) (R2, b2) = (R1R2, R1b2 + b1) .

Then, R3 is a normal subgroup with SO(3) as quotient group.
The action of E on R3 is given by

(R, b)u = Ru+ b (3)

where (R, b) ∈ E, u ∈ R3 and the matrix R is acting on column vectors

u =

 x1
x2
x3

 ∈ R3.
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Thus, (R, b) in (3) first rotates the vector u giving Ru, and then translates
Ru by b.
In order to specify rotations quantitatively, we introduce Euler angles.

We assume the following parametrization of the rotation matrix R

R = R(ψ1, φ, ψ2)

= R(ψ1)R(φ)R(ψ2) (4)

where R(ψi) (i = 1, 2) is a matrix of the form:

R(ψi) =

 cosψi 0 sinψi

0 1 0
− sinψi 0 cosψi


and R(φ) has the form:

R(φ) =

 cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 .

Here ψ1 is the first rotation angle about the x2-axis, φ is the following
rotation angle about the rotated x3-axis, and finally, ψ2 is the last rotation
angle about the x2-axis rotated by the previous two angles. Note that because
of historical reasons, Euler angles refer to rotations about the axes of the
moved system and therefore appear in reverse order.

2.3 The group SL(2,C) acting on bC
The group SL(2,C), consisting of all 2× 2 complex matrices of determinant
1, acts on nonzero column vectorsµ

z1
z2

¶
∈ C2.

If we take a local coordinate system on bC given by z1 = 1 (any point

ξ 6=∞ of bC is then identified with the point where the line z2 = ξz1 intersects
the line z1 = 1), one can easily check that the action of

g =

µ
a b
c d

¶
∈ SL(2,C)

7



on C2 induces the following action on slopes of the lines z2 = µz1,

µ 7−→ µ0 =
dµ+ c

bµ+ a
.

and consequently, SL(2,C) acts on bC by linear-fractional transformations
given by

SL(2,C) 3 g : ξ 7−→ g · ξ = dξ + c

bξ + a
(5)

if ξ 6= −a
b
. Moreover, g · −a

b
= ∞, g ·∞ = d

b
, and if b = 0, g ·∞ = ∞. Note

that (5) agrees with (2).
However, note that bothµ

a b
c d

¶
and

µ
−a −b
−c −d

¶
(6)

give the same orbit of ξ. Therefore, as we have discussed it in Section 2.1,
the projective group for patterns is the group

PSL(2,C) = SL(2,C)/{±Id}

where Id is the identity matrix. It is enough to take the quotient of SL(2,C)
by ±Id because of the normalization condition, namely, that every matrix in
SL(2,C) has a determinant of 1. Now, since {±Id} is discrete, the quotient
map of SL(2,C) onto SL(2,C)/{±Id} is a covering map. Moreover, SL(2,C)
is simply connected (because SU(2) ⊂ SL(2,C) is simply connected being
diffeomorphic with SO(3), see the proof of the next lemma) and therefore it
is the universal double cover of PSL(2,C).

Lemma 4 The maximal compact subgroup of SL(2,C),

SU(2) =

½µ
a b
−b a

¶
: a, b ∈ C, |a|2 + |b|2 = 1

¾
,

is the universal double cover of the group of rotations SO(3).
Proof. This lemma is proved here using the explicit relation between a and
b and Euler angles ψ1, φ and ψ2 centered at (0, 1, 0) since the pinhole of the
camera will be located at the origin and the image plane will be given by x2 =
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1. This relation gives a two-to-one diffeomorphism between SU(2) and SO(3)
(SO(3) acts here on the unit sphere S2 that is centered at (0, 1, 0)) and defines
a double covering map π : SU(2)→ SO(3). By this diffeomorphism, SU(2) is
simply connected and therefore SU(2) is the universal double covering group
of SO(3).
To this end, in order to express k ∈ SU(2) as a function k(ψ1, φ, ψ2) of

the Euler angles we set

k =

µ
a −b
b a

¶
and we define the traceless hermitian matrix Ω(u) for each u = (x1, x2 − 1, x3)t
by

Ω(u) =

µ
−x2 + 1 x3 − ix1
x3 + ix1 x2 − 1

¶
.

Next, we prove that the matrix R defined by

u0 = Ru (7)

where u0 = (x01, x
0
2 − 1, x03)

t, if and only if

Ω(u0) = kΩ(u)k−1 (8)

is a rotation matrix. In fact, for every k ∈ SU(2), kΩ(u)k−1is a traceless
hermitian matrix, which shows that R exists. Moreover, since

− kuk = detΩ(u)

= detΩ(u0) = − ku0k ,

R is a rotation centered at (0, 1, 0).
Finally, if R is parametrized by Euler angles ψ1, φ and ψ2, then solving

the set of equations in (7) and (8) will yield the diffeomorphism SO(3) 3 (ψ1,
φ, ψ2)→ k(ψ1, φ, ψ2) ∈ SU(2) given explicitly by (see also [4], p. 188)

a = ± cos
µ
φ

2

¶
ei(ψ1+ψ2)/2 (9)

and

b = ±i sin
µ
φ

2

¶
ei(ψ1−ψ2)/2 (10)
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(both with ” + ” or both with ” − ”). One checks that the point (ψ01, φ0, ψ02)
satisfying k(ψ01, φ

0, ψ02) = −k(ψ1, φ, ψ2) is not in the same chart on SO(3)
as (ψ1, φ, ψ2).

The more detailed discussion of the group manifolds of SO(3) and SU(2)
may be found in [4]. Also, for the background material on covering spaces
we refer to [19].

3 The PSL(2,C)-camera for patterns
We start with the description of a pinhole camera. The pinhole, or optical
center, of the camera is located at the center of the planar projection. This
is the point where the incoming rays of light intersect each other, giving
an image on the image plane. The ray perpendicular to the image plane is
usually assumed to be the optical axis and points in the viewing direction.
The point where the optical axis intersects the image plane is called the
principal point.
In order to formulate a camera model quantitatively, we consider an image

plane to be the plane x2 = 1 in R3 = {(x1, x2, x3)t : xi ∈ R}. Then, the image
of (x1, x2, x3)

t on the image plane is given by the projection j : R3 → C,

j

 x1
x2
x3

 =
x3 + ix1

x2
(11)

where C is identified with the plane x2 = 1 in R3 by using complex coordi-
nates x3 + ix1.
This image plane can be regarded as the extended complex line bC =

C ∪ {∞} with its affine piece C given by the equation x2 = 1 if we require
that

j

 x1
0
x3

 =∞.

In order to introduce the action of the group SL(2,C) on the complex
image plane we should take

C2 =
½µ

z1
z2

¶
: z1 = x2 + iy, z2 = x3 + ix1

¾
.
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Indeed, if we choose a local coordinate system on bC given by z1 = 1, then the
points ξ of the affine patch C are identified with the points (1, x3+ ix1) (i.e.,
where the lines z2 = ξz1 intersect the line z1 = 1). Note that the choice of
the image plane will result in the agreement with the left action used in this
article in the construction of the principal series representations of SL(2,C).
Consequently, the action ofµ

a b
c d

¶
= g ∈ SL(2,C)

on the image plane bC is given in (5), i.e.,
g · ξ = dξ + c

bξ + a
. (12)

Assuming that patterns ”live” on the image plane x2 = 1, the projective
distortions of a pattern are generated by translating or rotating the pattern
to form its ”virtual” space position and then projecting by (11) on the image
plane, and by all finite iterations of these basic distortions. In fact, patterns
are defined on bC, however, we work with them in the affine patch given by
z1 = 1. Thus, we state the following

Definition 5 A pattern P is a function f, its intensity function, with a
compact support D in the image plane bC. We write

P = {f : D→ R}. (13)

Its projective distortion is a pattern Pg where

Pg = {fg−1 : gD→ R}, g ∈ G× (14)

where G× is the set generated by all finite iterations of distortions produced
by rotations or translations as described before.

Note that Pg ”inherits” the intensity of P at corresponding points, i.e.,
f 0(ξ0) = f(ξ) where ξ0 = gξ and f 0 = fg−1. It is a useful starting point of
the image analysis, which may be realized by ex posto facto calibration, see
[1]. We refer to Definition 5 as to a camera model for patterns.
In order to describe G× in (14), we start with some preliminary facts.
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It follows from Lemma 4 that for a given r = R(ψ2, φ, ψ1) ∈ SO(3) there
is the element k ∈ SU(2) ⊂ SL(2,C) acting by

k · ξ =

µ
a −b
b a

¶
ξ

=
aξ + b

−bξ + a
(15)

such that jr = kj, where a and b given in (9) and (10), respectively and j is
given in (11).
The corresponding result for the translational part of Euclidean group is

treated in the following lemma.

Lemma 6 Given b = (b1, b2,b3)
t ∈ R3. There is the map h : C→ C given by

h · ξ = α −1ξ + β

α
(16)

such that jb = hj, α 6= 0 is given by

α = (1 + b2)
1/2 if 1 + b2 > 0

α = i (|1 + b2|)1/2 if 1 + b2 < 0

and

β = (b3 + ib1)α
−1. (17)

Proof. If (x1, 1, x3)
t is translated by b = (b1, b2,b3)

t and then projected by
(11), we obtain (x01, 1, x

0
3)
t where

x03 + ix01 =
x3 + ix1 + b3 + ib1

1 + b2
=

α −1ξ + β

α

with α given in (17) and β in (17).

The conditions in (17) exclude the translation vectors b = (b1,−1,b3)t. All
points (x1, 1, x3)

t when translated by these vectors have the second coordinate
zero and therefore are projected by (11) on∞. This exclusion agrees with the
idea, reappearing frequently in this work, of admitting generic projections.
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A simple implication of the last lemma is the factorization of h. We have
two cases:
(1) If 1 + b2 > 0, then

h = an (18)

(2) If 1 + b2 < 0, then

h = εan (19)

where

ε =

µ
−i 0
0 i

¶
and

a ∈ A =
½µ

δ 0
0 δ−1

¶
: δ ∈ R+

¾
, (20)

n ∈ N =

½µ
1 0
γ 1

¶
: γ ∈ C

¾
. (21)

In the remaining part of this section, we prove two main results (Theorem
7 and Corollary 8) that conclude the camera model.

Theorem 7 The set G× in (14) is the projective group

PSL(2,C) = SL(2,C)/{±Id}.

Proof. In order to prove this theorem first we show that for a given pattern
P = {f : D → R} and s in SO(3), or in R3, there is the corresponding s0
such that js = g and js0 = g−1, that is, (Pg)g−1 = P. The existence of such
s0 follows from (15) and (16). Now, using the decomposition (for example,
see [13], p. 126),

SL(2,C) = SU(2)ASU(2)

where A is defined in (20), we conclude that G× = PSL(2,C). .
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To conclude the camera model we must prove that the action of the
group PSL(2,C) on the image plane covers all projective transformations
between different planes. This fact is a corollary of Theorem 7 and the
explicit calculation of the projective group in affine charts of the projective
line.
To this end, recall that the projective transformations P (E)→ P (E) form

the projective group of E under composition of maps, denoted byPSL(E) and
isomorphic with GL(E)/K∗Id. In the case of E = C2 (i.e., P (E) = P 1(C)),
the group PSL(C2) can be identified with the group PSL(2,C) acting on
P 1(C) ∼= bC by linear-fractional transformations. An explicit calculation of
this fact has been given in (2).

Corollary 8 In the camera model, PSL(2,C) acting on the image plane
x2 = 1 identified with C models all generic projective transformations of a
given pattern.

We call the camera model for patterns the PSL(2,C)-camera.

4 The relation of the PSL(2,C)-camera with
other camera models

The camera models are used in machine vision research to extract information
about a scene from its images, and for a dynamic scene, also predict the future
locations of objects in the scene. They can be classified into two categories;
calibrated and uncalibrated with the different types of cameras in each of the
categories.
The projective camera is the most general camera. It projects the points

of space on an image plane. This projection can be written as 3× 4 real ma-
trix in the homogeneous coordinates in space (the world coordinates) and in
an image plane (the camera coordinates). Since scale is arbitrary for homoge-
neous coordinates and the mapping places no restrictions on the coordinates,
it is called an uncalibrated camera. The other less general uncalibrated cam-
era is the affine camera. It corresponds to a projective camera with the center
of projection on the plane at infinity; which means that all projecting rays
are parallel. This camera results in the composed effect of affine transforma-
tions between the world and camera coordinates, parallel projections onto
the image plane and affine transformation of the image plane coordinates.
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All other cameras, including calibrated cameras, are obtained from the
two uncalibrated cameras by specifying coordinate frames, transformations
between frames, and camera parameters (i.e., ”calibration”) such as the focal
length or the principal point.
The most general calibrated camera is the perspective camera. This

model employs central (i.e., perspective) projections, reducing to the pre-
viously described pinhole camera when the world and camera coordinate
frames are related by an Euclidean transformation. Further restrictions re-
sults in less general camera models, such as the weak perspective camera
(when the depth variation of objects along the viewing line is small com-
pared with the viewing distance) or the orthographic camera (orthographic
projections).
Any of the discussed above cameras is defined by projections character-

ized by the corresponding 3 × 4 homogeneous matrix, see [16] , where also
a nice discussion of the cameras with emphasis on both machine vision and
projective geometry is given. The classification of cameras with the corre-
sponding matrices is given in [18] p. 42.
A set of 3 × 4 matrices that characterize a corresponding camera does

not form a group. In contrast, the PSL(2,C)-camera model constructed in
Section 3 is a camera that is characterized by the projective transformations
between the image planes of two different perspective projections. These
projective transformations are given in terms of PSL(2,C) acting on the
camera image plane by linear-fractional transformations and they form the
projective group under composition (with the point ∞ included).

5 Irreducible unitary representations of SL(2,C)
It follows from the PSL(2,C)-camera model that the projectively adapted
harmonic analysis for patterns could be formulated on the homogeneous spacebC of the group SL(2,C). This analysis of patterns’ intensity functions is given
in terms of the irreducible unitary representations of SL(2,C). There are
different realizations of the irreducible unitary representations of SL(2,C).
The realization which is referred to as induced representations of SL(2,C)
in noncompact picture, see [13], p. 169, is the most convenient to work
with analytically and will be used in this work. Before we write down the
irreducible unitary representations of SL(2,C), first, for completeness, we
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state general definitions and discuss how irreducible unitary representations
of SL(2,C) can be realized as induced representations.

5.1 Representations

Let G be a locally compact group, then

Definition 9 A representation of G on a complex Hilbert space V is a ho-
momorphism R of G into the group of bounded linear operators on V with
bounded inverses such that the resulting map of G×V into V is continuous.

An invariant subspace of R is a vector subspace U ⊂ V such that
R(g)U ⊂ U for all g ∈ G.

Definition 10 A representation is irreducible if it has no closed invariant
subspaces other then 0 and V.

Such a representation is unitary if R(g) is unitary and two (unitary)
representations of G, R on V and R0 on V 0 are (unitarily) equivalent if there
is a (unitary) bounded linear T : V → V 0 with a bounded inverse such that
R0(g)T = TR(g) for all g ∈ G.

Example 11 (1)G = SL(2,C), V = L2(C2) (here C2 = R4) andR(g)f(z) =
f(g−1z) with the usual inner product on V is a unitary representation.
(2) G is a Lie group, V = L2(G, dlx) taken with respect to a left-invariant

measure dlx and R(g)f(x) = f(g−1x) is the left regular representation of
G. The right regular representation R0 is given by R0(g)f(x) = f(xg) on
L2(G, drx) where drx is a right-invariant measure on G.

5.2 Induced representations of SL(2,C)
We start by showing that, in the sense discussed below,

SL(2,C)/B ≈ C = R2

where B is the Borel (”parabolic”) subgroup of SL(2,C),

B =

½µ
α β
0 α−1

¶
: α ∈ C∗, β ∈ C

¾
(22)
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with C∗ = C\{0} being the multiplicative group of complex numbers. Note
that B =MAN with M being the maximal torus in SU(2) (generated by
rotations in the image plane),

M =

½µ
eiθ 0
0 e−iθ

¶¾
,

A defined in (20) and N containing all the upper triangular matrices with
one along diagonals.
Indeed, the Gauss decomposition

SL(2,C) .
= NMAN = NB, (23)

where ”
.
=” means that equality holds except some lower dimensional subset,

i.e., almost everywhere, is given by

g = n(g)m(g)a(g)n(g) (24)

with

n(g) =

µ
1 0

γ/α 1

¶
; m(g) =

Ã
α
|α| 0

0 |α|
α

!
;

a(g) =

µ
|α| 0
0 |α|−1

¶
; n(g) =

µ
1 β/α
0 1

¶
where

g =

µ
α β
γ δ

¶
is such that α 6= 0.
Therefore,

SL(2,C)/B .
= N ∼= C

because a Lie group N = {n(g) : g ∈ SL(2,C)} is Lie isomorphic with the
additive group of complex numbers C through the action

n(g)ξ = ξ +
γ

α
.

In most of the contemporary research papers and monographs, the irre-
ducible unitary representations on a semisimple groups are constructed as
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the induced representations. In the case of the group SL(2,C), the irre-
ducible unitary representation are induced from the one dimensional unitary
representations of M given by

πk (m) = πk
¡
eiθ
¢

= eikθ

where

m =

µ
eiθ 0
0 e−iθ

¶
∈M.

This representation can be extended to the closed subgroup B =MAN, the
semidirect product ofMA andN, N being the normal subgroup of SL(2,C),
by the formula

π

µ
α γ
0 α−1

¶
= πk,s(α)

= πk

µ
α

|α|

¶
|α|is.

Note that

MA =

½µ
α 0
0 α−1

¶
: α ∈ C∗

¾
is topologically isomorphic with C∗ and πk,s(α) are characters of the multi-
plicative group C∗.
Now, taking the space {F : SL(2,C)→ C : F (gman) = πk,s(α)

−1|α|−2F (g)}
with the norm

kFk =
Z
SU(2)

|F (k)|2dk

(well defined by Iwasawa factorization: SL(2,C) = SU(2)AN) and SL(2,C)
acting by

R (B, k, s, g)F (x) = F (g−1x),

the actual Hilbert space and representation is then obtained by completion.
This is called the induced picture. Its restriction to the subgroup SU(2) is
called the compact picture.
Finally, the induced representations in the noncompact picture are the

irreducible unitary representations of the principal series, which will be listed
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in (29), are obtained by taking the restriction of the induced picture to
N ∼= C. It follows from the Gauss decomposition (23) given explicitly in
(24). For detailed calculations see Example 1 on p. 222 in [22].

5.3 Irreducible representations of SL(2,C)
We list here all irreducible representations of SL(2,C), referring to [10], [13],
or [22] for more details.
The finite-dimensional irreducible representations Pm,n

g of SL(2,C) as-
sociated with the action of SL(2,C) on C2 are parametrized by pairs of
nonnegative integers m and n as follows. For (m,n) let Vmn be the vector
space of polynomials P in z1, z2, z1, z2 that are homogeneous of degree m in
(z1, z2) and homogeneous of degree n in (z1, z2). The action is given by

Pm,n
g P

µ
z1
z2

¶
= P

µ
g−1

µ
z1
z2

¶¶
where g ∈ SL(2,C). It is the class of smooth irreducible finite representa-
tions. The class of holomorphic irreducible finite representations of SL(2,C)
consists of representations Pm

g (which can be though of as Pm,0
g ) acting on

the vector space Vm of polynomials P in z1 and z2 that are homogeneous of
degree m in (z1, z2).
In turns out that there are no other irreducible finite-dimensional repre-

sentations of SL(2,C) up to an equivalence.
For our purpose we shall consider the following realization of Vmn. With

P in Vmn we associate the function ϕ(ξ) by

P

µ
z1
z2

¶
= zm1 z

n
1ϕ(z2/z1)

Then, Pm,n
g has the following realization

Pm,n
g ϕ(ξ) = (−bξ + d)m(−bξ + d)

n
ϕ

µ
aξ − c

−bξ + d

¶
. (25)

where according to (5),

g−1 · ξ = aξ − c

−bξ + d
if g =

µ
a b
c d

¶
.
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The infinite-dimensional irreducible representations of SL(2,C) are clas-
sified as follows.
The nonunitary principal series of SL(2,C) is the family of representa-

tions T k,w
g indexed by pairs (k, w) with k ∈ Z and w ∈ C. The representation

T k,w
g is given by

T k,w
g ϕ(ξ) = |−bξ + d|−2+w

µ
−bξ + d

|−bξ + d|

¶k

ϕ

µ
aξ − c

−bξ + d

¶
(26)

and the Hilbert space is L2(C) with respect to the measure i
2
(1+|ξ|2)Rewdξdξ.

By comparing (26) with (25) we see that

m =
1

2
(k + w)− 1 (27)

and

n =
1

2
(−k + w)− 1. (28)

Moreover, if k = 0 and w is real, the corresponding representations be-
come unitary for 0 < w < 2 with respect to the inner product

hϕ, φi =
µ
i

2

¶2 Z
1

|ξ − η|2−w
ϕ(ξ)φ(η)dξdξdηdη

and the resulting representations are called the complementary series.
The principal series, or the unitary principal series, of SL(2,C) is the

family of representations (26) which are indexed by (k, is) with k ∈ Z and
s ∈ R, that is T k,is

g . In this case

T k,is
g ϕ(ξ) = |−bξ + d|−2+is

µ
−bξ + d

|−bξ + d|

¶k

ϕ

µ
aξ − c

−bξ + d

¶
. (29)

and the representations are unitary with respect to the inner product

hϕ, φi = i

2

Z
ϕ(ξ)φ(η)dξdη.

Moreover, the representations T k,is
g and T −k,−isg are equivalent.
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The expressions for the representations T k,w
g in (26) and T k,is

g in (29)
are not defined at the points ξ such that −bξ + d = 0. However, the rep-
resentations are defined on the Hilbert spaces with inner products given by
integrals, and in particular, the representations of the principal series T k,is

g

are defined on L2(C), and the formulas hold only up to sets of measure zero.
Up to the equivalence, the trivial representations, the unitary princi-

pal series and the complementary series are the only irreducible unitary
representations of SL(2,C), see for example, [13], p. 35. The nonuni-
tary principal series contains all irreducible finite-dimensional representa-
tions since Pk,l ⊂ T n−m,2+m+n. To see this recall that m = 1

2
(k+w)− 1 and

n = 1
2
(−k + w)− 1.

6 Harmonic analysis on complex projective

line

Fourier analysis on a Lie group G, or on its symmetric space G/H where H
is a closed subgroup ofG, decomposes the corresponding function spaces into
subspaces invariant under irreducible unitary representations induced by the
corresponding subgroup of the group G. The classical Fourier analysis on
Rn is a particular case of Euclidean group in which the irreducible unitary
representations are generated by its translation subgroup. All representations
in this classical case are one-dimensional since the translation subgroup is
commutative.
Our projectively adapted Fourier analysis for patterns will be given in

terms of the Fourier analysis of the double cover group SL(2,C) of the pro-
jective group PSL(2,C). The construction of the projectively adapted de-
composition of patterns into invariant (under the principal series representa-
tions (29)) components will be developed in the next subsections following
the general ideas of the harmonic analysis associated with the group SL(2,C)
as originally developed by Gelfand et al [10]. However, the harmonic analysis
as formulated here was not presented there.
As it is well known, this SL(2,C)-harmonic analysis involves only repre-

sentations of the principal series, see [10].
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6.1 Projective harmonic decomposition

We start by assuming that

P = {f : D→ R} (30)

is such that D is a compact subset of C∗ where C∗ is the multiplicative
group of complex number and associating with the gray-level function f
the function h defined as follows. For ν ∈ Λ = {µ|D ∩Dµ 6= ∅} where
Dµ = {µξ|µ ∈ C∗, ξ ∈ D} we set

h

µ
ν
νξ

¶
= |ν|−1f(νξ) (31)

Note that the function h has a compact support.
Next, we define the function

F (z1, z2) =
i

2

Z
h

µ
µz1
µz2

¶
µ−m−1µ −n−1dµdµ. (32)

and easily verify that

F (λz1, λz2) = λmλ
n
F (z1, z2).

Next, taking z1 = λ and z2 = λξ (i.e., the line through ξ = z2/z1) in the
integral (32), we can write

F (λ, λξ) = λmλ
n i

2

Z
h

µ
µ
µξ

¶
µ−m−1µ −n−1dµdµ.

It shows that the following integral

Φ(ξ) =
i

2

Z
h

µ
µ
µξ

¶
µ−m−1µ −n−1dµdµ (33)

is constant along the lines z2 = ξz1, and therefore, it is a well defined object
of the projective space bC.
The function F (z1, z2), or equivalently, its projective realization Φ(ξ), is

in the space D(m+1,n+1) introduced and discussed in [10], pp. 141-143. These
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spaces are the natural generalizations of the spaces Vmn of homogeneous poly-
nomials on which all finite-dimensional representations of SL(2,C) are con-
structed, see Section 5.3. Moreover, the spacesD(m+1,n+1) are fundamental in
constructing all infinite-dimensional irreducible representations of SL(2,C),
since it can be shown that every such representation, with some natural as-
sumptions, contains (on an everywhere dense subspace with stronger topol-
ogy) a representation on D(m+1,n+1), see [10], p. 141.
We now prove the following result.

Theorem 12 Under the transformation

Tgh

µ
z1
z2

¶
= h

µ
g−1

µ
z1
z2

¶¶
= h

µ
dz1 − bz2
−cz1 + az2

¶
where

g =

µ
a b
c d

¶
∈ SL(2,C),

the function defined by the integral (33) with m = 1
2
(k + is) − 1 and n =

1
2
(−k+ is)− 1 and denoted by Φ(ξ; k, s); s ∈ R, k ∈ Z, transforms according
to the unitary representation of the principal series T k,is

g of SL(2,C) in (29).
Proof. First, we note that

Tgh

µ
µ
µξ

¶
= h

µ
µ(d− bξ)
µ(−c+ aξ)

¶
.

Next, by the change of variable µ→ χ = µ(−bξ + d) in the integral

i

2

Z
Tgh

µ
µ
µξ

¶
µ−m−1µ −n−1dµdµ,

it can be written, using (33), as follows

(−bξ + d)m(−bξ + d)
n
Φ

µ
aξ − c

−bξ + d
; k, s

¶
.

Finally, introducing m = 1
2
(k + is)− 1 and n = 1

2
(−k + is)− 1 into the last

expression, we obtain

|− bξ + d|−2+is
µ
−bξ + d

|− bξ + d|

¶k

Φ

µ
aξ − c

−bξ + d
; k, s

¶
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which is the unitary principal series T k,is
g of SL(2,C) acting on Φ(ξ; k, s). In

fact, using the norm ||f ||22 = i
2

R
|f(z)|2dzdz we have°°T k,is

g Φ(ξ; k, s)
°°
2
=
°°|d− bξ|−2Φ

¡
g−1 · ξ; k, s

¢°°
2
.

Now, since dξ0dξ
0
= |d− bξ|−4dξdξ where ξ0 = g−1 · ξ = (−c+ aξ) / (d− bξ),

we easily obtain that
°°T k,is

g Φ
°°
2
= kΦk2 .

Note that the unitary representation T k,is
g , defined in Theorem 12 on the

function space D(m+1,n+1) where m = 1
2
(k + is)− 1 and n = 1

2
(−k + is)− 1,

which is isometry on D(m+1,n+1) by this theorem, can be extended uniquely
to unitary operators on the Hilbert space obtained by the completion of
D(m+1,n+1) with respect to the norm ||f ||2 on L2(C). This leads to the defin-
ition of the principal series of SL(2,C) acting on L2(C), which was given in
(29).

Theorem 13 The function f is given in terms of Φ(ξ; k, s) by

f(ξ) = (2π)−2
∞X

k=−∞

∞Z
−∞

Φ(ξ; k, s)ds (34)

Proof. This theorem can be proven as follows. First, by introducing µ =
eu+iθ into (33) with f given in (31), we can express it as the standard Fourier
integral

Φ(ξ; k, s) =

∞Z
−∞

2πZ
0

euf(eu+iθξ)e−i(us+θk)dθdu. (35)

Using that f has a compact support and 0 is not in its domain D, the inverse
of (35) is given by

euf(eu+iθξ) = (2π)−2
∞X

k=−∞

∞Z
−∞

Φ(ξ; k, s)ei(us+θk)ds. (36)

Finally, by taking u = θ = 0 in (36) we obtain (34).

Thus, Theorem 12 and Theorem 13 give SL(2,C)-analogue of the Fourier
decomposition. We elaborate further on this point by identifying, what we
call, the projective Fourier transform and Plancherel’s theorem.
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6.2 Projective Fourier transform of a pattern

For a given pattern (30) the integral 33, which can be also written as

Φ(ξ; k, s) =
i

2

Z
|µ|−1f(µξ)

µ
µ

|µ|

¶−k
|µ|−isdµdµ (37)

where µ 6= 0, transforms under the principal series T k,is
g of SL(2,C) given in

(29) and the function f has the decomposition (Theorem 13)

f(ξ) = (2π)−2
∞X

k=−∞

∞Z
−∞

Φ(ξ; k, s)ds.

Introducing ζ = µξ into the integral in (37), we obtain after simple cal-
culation

Φ(ξ; k, s) = |ξ|is−1
µ

ξ

|ξ|

¶k

F(k, s) (38)

and hence,

f(ξ) = (2π)−2
∞X

k=−∞

∞Z
−∞

|ξ|is−1
µ

ξ

|ξ|

¶k

F(k, s)ds (39)

and

F(k, s) =
i

2

Z
f(ζ)

µ
ζ

|ζ|

¶−k
|ζ|−is−1dζdζ (40)

is the projective analogue of the classical Fourier transform pair,

f(x) = (2π)−2
Z

F (k)ei<x,k>dk

and

F (k) =

Z
f(x)e−i<x,k>dx

where < ·, · > is the scalar product in R2.
Note that

25



πk,s(ζ) =

µ
ζ

|ζ|

¶k

|ζ|is (41)

are the characters of the Borel subgroup of SL(2,C), see [12], the projective
analogue of the characters ei<x,k> of the translation subgroup of Euclidean
group. Because of this analogy we give the following definition.

Definition 14 F(k, s) in (40) is called the projective Fourier transform of
the pattern P = {f : D→ R}.

We end here by showing in Figure 1 some graphs of the real and imaginary
parts of the characters πk,s(ζ).

 
 

          Re8,8   

              Re2,8       Im2,8  

         Im8,8

Figure 1. Graphs of the real and imaginary parts of the characters πk,s(ζ).
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6.3 Plancherel’s theorem

Plancherel’s theorem also holds in this projective analogue. To this end, we
define the measure ω byZ

F(k, s)dω = (2π)−2
∞X

k=−∞

∞Z
−∞

F(k, s)ds

and the norm ||F(k, s)|| as follows

||F(k, s)||2 =
Z
|F(k, s)|2dω.

Finally, Plancherel’s theorem can be formulated as follows.

Theorem 15 Let f be in L2(C). Then,

||f ||2 = ||F(k, s)|| (42)

Proof. We start by assuming that the function f ∈ L2(C) vanishes at the
origin. In this case, using Plancherel’s theorem for the (standard) Fourier
transform in (35), we obtain

∞Z
−∞

2πZ
0

e2u|f(eu+iθξ)|2dθdu = (2π)−2
∞X

k=−∞

∞Z
−∞

|ξ|−2|F(k, s)|2ds. (43)

Writing eu+iθξ = z, we have i
2
dzdz = e2u|ξ|2dθdu. Using it in (43), we arrive

at

i

2

Z
|f(z)|2 |ξ|−2dzdz = (2π)−2

∞X
k=−∞

∞Z
−∞

|F(k, s)|2|ξ|−2ds.

It shows that (42) holds for f with bounded support and which vanishes at
the origin. However, these functions form an everywhere dense set in L2(C∗)
which shows that (42) holds also for f ∈ L2(C). (We have used the fact that
f can be modified on any set of measure zero.)
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Thus, the last theorem says that the mapping f(ξ)→ F(k, s) is isometric
with respect to the norms ||f ||2 and ||F||.
In our final remark of this section we comment on a similar exposition

of the corresponding inversion and Plancherel formulas. In an excellent
monograph [20], the author decomposes the (right) regular representations
of SL(2,C) (cf, Example 11 given in Section 5.1) via the spectral decomposi-
tion of the complex dilations (that are commuting with the representations).
However, it seems from the brief discussion given in [20] on pp. 220-221
that the restriction of the representations taken in the noncompact picture,
and given in (2.95) in [20], are not the principal series representations. In
fact, they are not unitary representations with the exponents λ and µ given
in (2.94) which, in the notation used here, read m = 1

2
(k + is − 1) and

n = 1
2
(−k + is − 1), respectively. They should be compared with (27) and

(28) where w = is. On the other hand, if one takes the principal series
representation then, it seems that the Plancherel’s formula in [20] will not
hold.

7 The conclusion: Projectively adapted pat-

tern representation

There are two distinct ways of representing and rendering pictures in machine
vision. The geometric way begins with the representation of shapes of objects
in scenes in terms of geometrical primitives (mathematical abstractions), such
as lines, polygons, splines, cylinders and spheres. Here theorems from analyt-
ical geometry (both Euclidean and projective) are of paramount importance.
The imaging way, on the other hand, deals with arrays of numbers - discrete
samples of pixels - that are coming mostly from non-geometrical sources such
as digitized satellite photographs or X-radiographs, for example. Here the
Fourier and wavelet theories, with the Sampling Theorem, are of paramount
importance.
Of course, both approaches are interrelated. For example, one can extract

geometric data from sampled data. However, it frequently introduces thresh-
olding artifacts and in many situations, such as medical diagnostic imaging,
is highly undesirable.
The cameras used in computer vision research that have been mentioned
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in Section 4 belong to the geometric approach. They are used to extract
geometric information (for example, projective invariants) from scenes, and in
this sense, they play an active role, see, [2], [16], [17] and [18] for some recent
papers. On the other hand, the PSL(2,C)-camera model justifies the word
”projective”, but otherwise plays a passive role. The projective analogue of
Fourier decomposition for patterns based on the PSL(2,C)-camera model,
as it has been constructed in this work, belongs to the imaging approach.

7.1 Projectively adapted properties of the pattern de-
compositions

We shall discuss a closed-form relation under projective distortions of the
representation of patterns given in terms of the projective Fourier transforms.
First, we recall that for a given pattern P = {f : D → R}, where

D ⊂ C∗ is compact, we have constructed its representation (39) in terms of
the characters (41) of the Borel subgroup B =MAN of the group SL(2,C)
with the coefficients of the decomposition (40) given in terms of the projective
Fourier transform F(k, s) of f . Moreover, this F(k, s) can be written in the
form of the standard Fourier transform,

F(k, s) =

∞Z
−∞

2πZ
0

euf(eu+iθ)e−i(us+θk)dθdu (44)

which is obtained from (35) by taking ξ = 1, which should by important for
developing the fast algorithms for the projective Fourier transform.
Next, recalling the PSL(2,C)-camera model, the transformations of a

pattern consist of translations in the camera plane (N), ”virtual” perpen-
dicular translations out of the camera plane (A) and rotations (K = SU(2),
including also rotations in the camera plane given byM ⊂ K). Iterations of
these transformations, included in the camera model, can be produced by a
camera of a plane flying over a terrain and taking pictures of the same scene.
Under the action of

g ∈ KAN
the pattern’s intensity function f(z) transforms as f(g−1 · z), and conse-
quently, we obtain from (39) the projectively transformed Fourier recon-
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struction

f(g−1 · z) = (2π)−2
∞X

k=−∞

∞Z
−∞

|g−1 · z|is−1
µ

g−1 · z
|g−1 · z|

¶k

F(k, s)ds
(45)

where F(k, s) is the projective Fourier transform of the original (undistorted)
pattern, giving a closed-form relation.
The analogy with the classical Fourier transform is obtained by taking

g =

µ
a 0
0 a−1

¶
∈MA. (46)

For this subgroup MA, the subgroup of SL(2,C) with unitary representa-
tions given by the characters (41), we have,

f(g−1 · z) = f(a2z)

= (2π)−2
∞X

k=−∞

∞Z
−∞

|a2z|is−1
µ

a2z

|a2z|

¶k

F(k, s)ds

= (2π)−2
∞X

k=−∞

∞Z
−∞

|z|is−1
µ

z

|z|

¶k

|a2|is−1
µ

a2

|a2|

¶k

F(k, s)ds.

Thus, we conclude that under the transformation

f(z) 7−→ f(g−1 · z)

where g is given in (46), the projective Fourier transform F(k, s) transforms
as follows

F(k, s) 7−→ |a2|is−1
µ

a2

|a2|

¶k

F(k, s).

Also, our projectively adapted representation is invertible, that is, it pre-
serves all information of the pixel gray-level function of the original pattern
(Theorem 13 and Theorem 15). Usually, images from satellite and medical
images are stored by techniques which preserve information and some coun-
tries are already investigating legal requirements for the kind of techniques
can be used for archiving medical images, see [14].
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7.2 Computer simulations

We start with the first test in which we reconstruct a polar chessboard pattern
shown in Figure 2.

Figure 2. Two-scale chessboard pattern.

The reconstruction of this pattern is obtained using the inverse projective
Fourier transform (39) with the projective Fourier transform given in (40).
The approximations we have used in order to perform the computer simula-
tions consisted of the summation from −N to N and the integration from
−S to S taken in (39). In the reconstruction shown in Figure 3, we have
taken N = 64 and S = 220 and used the densityplot, a Maple procedure,

running the Maple software on a 200 Mhz Pentium Pro
R°
PC.

Figure 3. Computer simulation - Maple procedure - N=64 and S=220.
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The second test demonstrates the projectively adapted properties of the
projective Fourier transform. Here, the pattern consisting of a circular ring
is reconstructed in Figure 4 by the same technique used in the first test.
Fig4
The pattern is next projectively distorted by applying

g =

µ
cos φ

2
i sin φ

2

i sin φ
2

cos φ
2

¶
which represents rotation (out of the image plane x2 = 1) by the angle φ/2
about x3-axis, of the ring pattern and projecting it back on the image plane.
Computer simulations of (45) with

g−1 · z =
z cos φ

2
− i sin φ

2

−iz sin φ
2
+ cos φ

2

, (47)

using the same method as before, are shown in the Figure 5 for φ = π
12
, in

Figure 6 for φ = 0.378, in Figure 7 for φ = π
6
and finally in Figure 8 for

φ = 0.55. All distorted images are shown in the same scale as the original
pattern in Figure 4.

Figure 4. Circular ring pattern.
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Figure 5. Computer simulation - φ = π
12

Figure 6. Computer simulation - for φ = 0.378.
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Figure 7. Computer simulation - φ = π
6
.

Figure 8. Computer simulation - φ = 0.55.

Thus, we have produced the pattern’s projective distortions from the only
one projective Fourier transform of the original pattern.
Note that the projective Fourier transform of the ring pattern is given

by a single integral, as the pattern is symmetric with respect to the angular
variable, and therefore its reconstruction is easily obtained running the den-
sityplot procedure. On the other hand, its projective distortions produced
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by (47), when expressed in terms of their projective Fourier transforms, are
given by double integrals. We were unable to simulate any pattern recon-
struction involving double integrals that cannot be simplified at least to a
product of single integrals. For example, the projective Fourier transform of
the polar chessboard pattern involved the product of two single integrals.
The projectively adapted characteristics of the projective Fourier trans-

form allow us to obtain any projective distortion of a pattern, as produced
when the pictures of the same pattern are taken by a camera from different
vantage points, using only the projective Fourier transforms of the original
pattern.
Finally, we remark that the projective Fourier transform has an expression

in terms of the standard Fourier transform (35). It should be of importance
in practical implementations of this projective harmonic analysis in image
processing. In particular, one can try to adapt the fast Fourier transform
algorithms to the projective analogue. We have already done some work in
this direction.
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