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Abstract

This paper studies the relevance of the conformal camera to computational vision with a particular focus on stereopsis. First we review

projective Fourier analysis of the conformal camera and point to its unique attributes for modeling physiological aspects of perception.

Then we design the head–eye–visual cortex integrated system with each eye modeled by the conformal camera. It provides a biologically

realistic computational approach to the process of stereoscopic depth perception.

r 2006 Published by Elsevier B.V.
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1. Introduction

In biologically motivated machine vision systems, such
as the active vision system in [8], the camera head with
foveated sensor architecture (silicon retina) produces a
digital image similar to the cortical image of the retinotopic
mapping—the mapping that provides the initial stage in the
process by which the brain processes visual information.
More precisely, the nonuniform distribution of photore-
ceptors in the retina with the highest density at the fovea,
the highly structured retinotopic arrangement of axons
along the visual pathway, and a constant packing density
of neurons in the visual cortex produce topographic images
in the primary visual cortex (V1), with a significant
magnification of the foveal region. The brain sends this
information further to higher cortical areas (V2, V3/V3a,
MT, . . .) and in particular extracts visual cues about the 3D
world from 2D images, such as the depth cues from
binocular disparity and monocular motion parallax, and
constructs a vivid percept of depth.

A complex logarithm provides approximations of a local
topography of primate foveal and parafoveal regions [1].
To take advantage of the logarithmic space-variant
imaging, the exponential chirp transform, a modified
Mellin–Fourier transform, was constructed [2]. It retains
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the translation invariance, but also complicates the control
of aliasing. More fundamentally, in active vision systems,
the data model representing visual inputs should be well
adapted to image projective transformations produced by
different perspectives between objects and the camera, as
well as to the output from the silicon retina sensors
resembling the cortical topographic image. To this end, we
constructed the conformal camera, and, based on it, we
developed projective Fourier analysis furnishing the data
model for image representation well adapted to image
perspective transformations of planar objects [10]. Later,
the discrete projective Fourier transform was obtained and
numerical aspects, including aliasing, were discussed
[11,12]. It was shown there that projective Fourier analysis
is also well adapted to the retinotopic mapping of the brain
visual pathway and provides the computational framework
well suited for developing image processing tools explicitly
designed for silicon retina sensors. We design here a model
based on projective Fourier analysis that computationally
integrates the head, eyes and visual cortex and expect that
it will motivate building such a camera head as a part of an
integrated multiple sensory system [3].

2. Projective Fourier analysis of the conformal camera

Projective Fourier analysis has been constructed from
geometric harmonic analysis of the conformal camera
shown in Fig. 1(A). For a comprehensive discussion we
89
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Fig. 1. (A) Image projective transformations described in the text are generated by iterations of ‘‘h’’ and ‘‘k’’ transformations. (B) Projective degrees of

freedom reduced in the conformal camera (only x3 ¼ 0 section is shown).
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refer to [12]. In the conformal camera, the image projective
transformations are given by the Möbius group
PSLð2;CÞ ¼ SLð2;CÞ=f�Idg acting by linear-fractional
mappings on the image plane with complex coordinates
via.

�
a b

c d

� �
z ¼

dzþ c

bzþ a
; z ¼ x3 þ ix1 � ðx1; 1;x3Þ.

Thus, we must take the factor group SLð2;CÞ=f�Idg
consisting of 2� 2 complex matrices of determinant 1
where those matrices that differ in sign are identified. The
conformal camera reduces the projective degrees of free-
dom to the minimal set of projections—there is one image
projective transformation in the conformal camera shown
in Fig. 1(B) corresponding to different objects translated
and rotated in the 3D world. Since this camera is a
monocular system, rotations in the 3D world are generated
by projecting an object into a sphere with the center at the
focal point of the camera and rotating the sphere.

In geometric harmonic analysis of the group SLð2;CÞ, an
image is decomposed in terms of 1D unitary representa-
tions of the Borel subgroup of SLð2;CÞ, with the
coefficients of the representation given by projective Fourier

transform. This transform in log-polar coordinates be-
comes the standard Fourier transform; it can be computed
efficiently by a 2D fast Fourier transform (FFT). Using
this decomposition, we could render digital image perspec-
tive transformations of a pattern (planar object) by
computing only one discrete projective Fourier transform
of the original pattern.

The mapping w ¼ k lnðzþ aÞ is an accepted approxima-
tion of the topographic structure of primate V1 [1]. The
parameter a removes singularity but also destroys a nice
behavior of the logarithm, namely lnðvzÞ ¼ ln vþ ln z,
which is important in computing projective Fourier trans-
form with FFT. Remarkably, the newest study [4] supports
a line singularity in the fovea: according to the split theory,
which provides a greater understanding of vision cognitive
processes than the bilateral theory of overlapping projec-
tions, the ganglion cells in the fovea are divided (cones in
the fovea are individually connected to ganglion cells) such
 P
ROOF

that the corresponding half of their axons travel with the
nasal axons of each eye to join the temporal axons of the
other eye. We choose w ¼ ln z to model the packing
density of the ganglion cells away from the foveola, which
defines log-polar coordinates ðln r; yÞ � ln rþ iy ¼ lnðreiyÞ
in the cortex. This choice implies that both rotations and
scale changes of a pattern correspond (although for the
monocular vision) to cortical translations via.: lnðreiareiyÞ
corresponds to ðln rþ ln r; yþ aÞ, which provides a
significant computational advantage. Now, the feasibility
of the data model of image representation based on
projective Fourier analysis follows from the fact that, in
log-polar coordinates ðln r; yÞ, the projective Fourier
transform takes on the standard Fourier integral form
and can be computed by FFT. It can be done in the
following steps [11]: an analog image is digitized (d � d

pixels in Fig. 2(A)), its discrete projective Fourier trans-
form (DPFT) is formed and expressed in log-polar
coordinates which is finally computed by FFT. The
output—the cortical image of the bar pattern—is shown
in Fig. 2(B). Without DPFT the digital image must be re-
sampled with nonuniform log-polar sampling geometry—
pixels with the radial size changing logarithmically and a
constant angular size—and expressed in the log-polar
coordinate plane with uniform sampling geometry (d1 � d2
pixels of the cortical image), a rather costly procedure for
real images.
3. Integrated binocular vision system

The idea of how percepts are represented in the brain is
still not well understood. For example, a striking feature of
human stereopsis is that depth perception depends on
relative disparity (i.e., the difference in retinal disparities of
two features in the visual field), but encoding of relative
disparity has only been recently investigated [5]. Thus,
linking known physiological details with computational
modeling and engineering designs are vital not only to the
emerging field of neural engineering but can also be useful
in interpreting relevant neurophysiological data [7]. In this
section we present, based on the computational framework
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Fig. 2. (A) Log-polar sampling of a bar pattern (retinal image). (B) Inverse DPFT of the bar pattern in the log-polar coordinate plane (cortical image).

Pixels are shown in the upper left corner.

Fig. 3. Head–eye–visual cortex integrated system. The eyes are modeled by the conformal cameras.
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of projective Fourier analysis, a design that integrates the
head, eyes and visual cortex into one system. This system
with eyes modeled by conformal cameras is shown in Fig.
3. The scene consists of a gray square and a black bar
located in front of it, as seen from above. The fact that the
scene is ‘‘seen’’ from slightly different vantage point by
each camera, (A) and (C) in Fig. 4 (we ignore that images
are inverted), implies that the system produces two
different cortical images in V1, shown in (B) and (D) in
Fig. 4. It follows from the study of iso-disparity surfaces in
stereo configurations along the epipolar lines [6] that
theoretical horopters of our vision system are conics that
closely resemble the empirical horopters. To sum up, our
binocular model numerically integrates the head, eyes and

visual cortex and supplies the output that mimics the
cortical images for which the brain’s disparity-tuned
neurons use simple geometry to estimate the relative depths
of objects in the scene. Because disparity-tuned units, based
on the response properties of real binocular cells, can
effectively compute disparity maps from stereograms [7].
This bioncular system provides a computational frame-
work for developing physiologically realistic models of
stereo vision.

4. Additional remarks and conclusions

It is worth mentioning that the results we have
established shed light on a recent remarkable construction.
Starting in [9] with the space S of 2D shapes given by the
set of all closed, simple, smooth curves in the plane,
modern complex analysis shows that shapes can be
classified up to an arbitrary Möbius transformation in
PSLð2;CÞ. The conformal camera has image projective
transformations given by the Möbius group PSLð2;CÞ,
which implies that the classification of 2D shapes obtained
in [9] is in fact both perspectively and retinotopically
invariant.
We designed here the head–eye–visual cortex system

based on computational theory, paying close attention to
physiological details of the brain’s visual pathway. We plan
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Fig. 4. 3D scene seen by the right conformal camera (A) and the left conformal camera (C). The corresponding cortical images are shown in (B) and (D).
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to integrate this system further as a computational unit by
developing a Lie-group formulation of its kinematics, and
to simulate numerically some simple tasks of depth
perception. However, to conduct quantitative experiments
with tasks of depth perception, an active vision system with
silicon retinas wired according to the head–eye–visual
cortex system is needed. Finally, we intend to study
topological characteristics of the cortical topography
imposed by the partial crossing of the neuronal fibers
between the brain hemispheres and a line singularity in the
fovea.
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