
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 1

STARTING OUT WITH

Visual Basic 2008
FOURTH EDITION

Tony Gaddis
Haywood Community College

Kip Irvine
Florida International University

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter
Making Decisions and
Working With Strings4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 3

Introduction
 This chapter covers the Visual Basic decision

statements
 If…Then
 If…Then…Else
 If…Then…ElseIf
 Select Case

 It also discusses the use of
 Radio Buttons
 Message Boxes

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Decision Structure4.1
The Decision Structure Allows a

Program to Have More Than One
Path of Execution

2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 5

Order of Statement Execution

 Thus far, our code has been executed
sequentially in a sequence structure

 To write meaningful programs we need multiple
paths of execution
 Some statements should be executed under

certain circumstances in a decision structure
 This chapter presents the means to execute

statements conditionally
 Next chapter presents the means to execute

the same statements repeatedly

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 6

The Decision Structure

 Flowchart of a
typical decision
structure

 Evaluate the
condition
Is it cold outside?

 Execute or skip
over some code
If yes, wear a coat

Condition

Conditional
Code

True

False

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The If…Then Statement4.2

The If…Then Statement Causes Other
Statements to Execute Only Under a

Certain Condition

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 8

If…Then Statement Syntax

 New keywords used above:
 If
 Then
 End

If condition Then
statement
(more statements as needed)

End If

3

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 9

Relational Operators Test Conditions

 Usually a condition is formed using a relational
operator

 A relational operator determines if a specific
relationship exists between two values
 > Greater than
 < Less than
 = Equal to
 <> Not equal to
 >= Greater than or equal to
 <= Less than or equal to

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 10

Binary Operators

 Relational operators are binary – meaning they
use two operands, for example:

length > width Is length greater than width?
size <= 10 Is size less than or equal 10?

 Relational operators yield a True or False result

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 11

If…Then Examples

‘Bonus awarded if sales greater than 50000
If sales > 50000 Then

getsBonus = True
End If

‘Bonus, 12% commission rate, and a day off
‘awarded if sales greater than 50000
If sales > 50000 Then

getsBonus = True
commissionRate = 0.12
daysOff = daysOff + 1

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 12

If…Then Rules

 The If and the Then must be on the same line
 Only a remark may follow the Then
 The End If must be on a separate line
 Only a remark may follow the End If

 Tutorial 4-1 presents an application that uses the
If…Then statement

4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 13

If…Then Programming Style

 The code between the If…Then and the End If
is indented

 Visual Basic does not require this
 It is a convention among programmers to aid in

the readability of programs
 By default, the Visual Basic editor will

automatically do this indentation as you enter
your program

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 14

Relational Operators
with Math Operators

 Either or both relational operator operands may
be mathematical expressions

 Math operators are evaluated before relational
operators

 x+y and a-b are evaluated first
 Each result is then compared using the >

operator

If x + y > a - b Then
lblMessage.Text = "It is true!"

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 15

Relational Operators
With Function Calls

 Either or both relational operator operands may
be function calls

If CInt(txtInput.Text) < 100 Then
lblMessage.Text = "It is true!"

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 16

Boolean Variables as Flags

 A flag is a Boolean variable that signals when
some condition exists in the program

 Since a Boolean variable is either True or False,
it can be used as the condition of an If
 Since a Boolean variable already evaluates to

True or False, an operator is not required

If blnQuotaMet Then
lblMessage.Text = "You have met your sales quota"

End If

5

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The If…Then…Else
Statement4.3

The If...Then...Else Statement Executes
One Group of Statements If the Condition
Is True and Another Group of Statements

If the Condition Is False
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 18

If…Then vs. If…Then…Else

 The If…Then construct will execute or ignore a
group of statements
(do something or do nothing)

 The If…Then…Else construct will execute one
group of statements or another group (do this or
do that)

 Tutorial 4-2 contains an example of the
If…Then…Else construct

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 19

If…Then…Else Example

Condition

Statement(s)
If True

TrueFalse

Statement(s)
If False

If temperature < 40 Then
lblMesage.Text = “A little cold, isn’t it?”

Else
lblMesage.Text = “Nice weather we’re having!”

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The If…Then…ElseIf
Statement4.4

The If...Then…Elseif Statement Is Like a Chain
of If...Then...Else Statements

They Perform Their Tests, One After the Other,
Until One of Them Is Found to Be True

6

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 21

Two Mutually Exclusive Choices

 The If…Then…Else has two choices
 The condition will either be True or False
 So either the Then clause or Else clause will

be executed
 These are two mutually exclusive choices

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 22

Multiple Possible Choices

 The If…Then…ElseIf statement allows for an
entire series of possible choices

 In pseudo code:
If it is very cold Then

Wear a coat
Elseif it is chilly

Wear a light jacket
Elseif it is windy

Wear a windbreaker
Elseif it is hot

Wear no jacket

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 23

Multiple Possible Choices

 Each of the series of conditions in an
If…Then…ElseIf is tested in sequence

 When a condition is true, the remaining
conditions are ignored

 The order of the conditions is vital
 Wrong order can result in wrong decision
 What if it’s chilly and windy?
 If windy is tested before chilly, you’d go out

with a windbreaker when you need a jacket

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 24

In Visual Basic Syntax

If condition1 Then
Statement(s)1

Elseif condition2 Then
Statements(s)2

Elseif condition3 Then
Statements3

…
End If

7

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 25

In Flowchart Form

C1

C2

C3

Statement(s)1
True

Statement(s)2
True

Statement(s)3
True

False

False

False

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 26

Example of ElseIf Usage
If sngAverage < 60 Then

lblGrade.Text = "F"
ElseIf sngAverage < 70 Then

lblGrade.Text = "D"
ElseIf sngAverage < 80 Then

lblGrade.Text = "C"
ElseIf sngAverage < 90 Then

lblGrade.Text = "B"
ElseIf sngAverage <= 100 Then

lblGrade.Text = "A"
End If

 Does the order of these conditions matter?
 What happens if we reverse the order?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 27

The Same Code Without ElseIf
If sngAverage < 60 Then

lblGrade.Text = "F"
End If
If sngAverage < 70 Then

lblGrade.Text = "D"
End If
If sngAverage < 80 Then

lblGrade.Text = "C"
End If
If sngAverage < 90 Then

lblGrade.Text = "B"
End If
If sngAverage <= 100 Then

lblGrade.Text = "A"
End If

 Does this code function correctly? What is
assigned to lblGrade for a 65 average? 75?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 28

The (Optional) Trailing Else

 A sequence of ElseIf’s may end with a plain Else,
called a trailing Else

 If none of the conditions are True, the trailing Else
statement(s) will be executed

8

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 29

Use of a Trailing Else

If sngAverage < 60 Then
lblGrade.Text = "F"

ElseIf sngAverage < 70 Then
lblGrade.Text = "D"

ElseIf sngAverage < 80 Then
lblGrade.Text = "C"

ElseIf sngAverage < 90 Then
lblGrade.Text = "B"

ElseIf sngAverage <= 100 Then
lblGrade.Text = "A"

Else
lblGrade.Text = "Invalid"

End If

 If average is greater than 100, lblGrade is
assigned the text “Invalid”

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Nested If Statements4.5
A Nested If Statement Is an If Statement

in the Conditionally Executed Code of
Another If Statement

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 31

If Statements Within If Statements

 Any type of statement may be used inside a set
of Then, Else, or ElseIf statements of an If

 This includes other If statements
 If statements within If statements create a

more complex decision structure called a
Nested If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 32

Nested If Example

If sngSalary > 30000 Then
If intYearsOnJob > 2 Then

lblMessage.Text = “Applicant qualifies."
Else

lblMessage.Text = “Applicant does not qualify."
End If

Else
If intYearsOnJob > 5 Then

lblMessage.Text = “Applicant qualifies."
Else

lblMessage.Text = “Applicant does not qualify."
End If

End If Note how the convention of indentations
emphasizes the structure of nested Ifs.

 A bank customer qualifies for a special loan if:
 Earns over 30000 & on the job more than 2 years
 Or been on the job more than 5 years

9

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 33

Flowchart Version

intYearsOnJob > 2

sngSalary > 30000

intYearsOnJob > 5

lblMessage.Text =
“Applicant
qualifies."

lblMessage.Text =
“Applicant does
not qualify."

lblMessage.Text =
“Applicant
qualifies."

lblMessage.Text =
“Applicant does
not qualify."

False

False False

True

TrueTrue

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Logical Operators4.6

Logical Operators Combine Two or More
Relational Expressions Into a Single

Expression

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 35

Visual Basic Logical Operators

Operator Effect
And Both operands must be true for the overall

expression to be true, otherwise it is false

Or One or both operands must be true for the overall
expression to be true, otherwise it is false

Xor One operand (but not both) must be true for the
overall expression to be true, otherwise it is false

Not Reverses the logical value of an expression

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 36

The And Operator
The truth table for the And Operator

Expression 1 Expression 2 Expression 1 And Expression 2
True False False
False True False
False False False
True True True

If temperature < 20 And minutes > 12 Then
lblMessage.Text = “Temperature is in the danger zone."

End If

AndAlso operator works identically but does not test
minutes>12 if temperature<20 is false

10

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 37

The Or Operator
The truth table for the Or Operator

Expression 1 Expression 2 Expression 1 Or Expression 2
True False True
False True True
False False False
True True True

If temperature < 20 Or temperature > 100 Then
lblMessage.Text = “Temperature is in the danger zone."

End If

OrElse operator works identically but does not test
minutes>12 if temperature<20 is true

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 38

The Xor Operator

If total > 1000 Xor average > 120 Then
lblMessage.Text = “You may try again."

End If

The truth table for the Xor Operator

Expression 1 Expression 2 Expression 1 Or Expression 2
True False True
False True True
False False False
True True False

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 39

The Not Operator

The truth table for the Not Operator

Expression 1 Not Expression 1
True False
False True

If Not temperature > 100 Then
lblMessage.Text = "You are below the maximum temperature."

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 40

Checking Numerical Ranges

 Checking for a value inside a range uses And

 Checking for a value outside a range uses Or

If x >= 20 And x <= 40 Then
lblMessage.Text = “Value is in the acceptable range."

End If

If x < 20 Or x > 40 Then
lblMessage.Text = “Value is outside the acceptable range."

End If

11

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 41

Precedence of Logical Operators

 Logical operators have an order of precedence
just as arithmetic operators do

 From highest to lowest precedence
 Not
 And
 Or
 Xor

 As with arithmetic operations, parentheses are
often used to clarify order of operations

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 42

Precedence of Logical Operators

 For example, in the statement
 If x < 0 And y > 100 Or z = 50
 x < 0 And y > 100 is evaluated first
 If the And condition is true, we then evaluate
 True Or z = 50
 If the And condition is false, we then evaluate
 False Or z = 50

 If the Or condition is to be evaluated first
parentheses must be used
 If x < 0 And (y > 100 Or z = 50)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 43

Math, Relational, &
Logical Operators
 Evaluate the following if a=5, b=7, x=100, y=30

If x > a * 10 And y < b + 20

Evaluating the math operators leaves us with
If x > 50 And y < 27

Evaluating the relational operators leaves
If True And False

Evaluating the logical operators leaves
False

 Parentheses make order of operations clear
If (x > (a * 10)) And (y < (b + 20))

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Comparing, Testing,
and Working With Strings4.7

This Section Shows You How to Use Relational
Operators to Compare Strings, and Discusses
Several Intrinsic Functions That Perform Tests

and Manipulations on Strings

12

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 45

Strings Can Be Compared

strName1 = "Mary"
strName2 = "Mark"
If strName1 = strName2 Then

lblMessage.Text = “Names are the same"
Else

lblMessage.Text = “Names are NOT the same"
End If

If strMonth <> "October" Then
' statement

End If

 Relational operators can be used to compare
strings and string literals as well as numbers

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 46

How Are Strings Compared?
 Each character is encoded as a numerical value

using the Unicode standard
 Letters are arranged in alphabetic order

 The Unicode numeric code for A is less than
the Unicode numeric code for B

 Characters of each string are compared one by
one until a difference is found
 M a r y

 M a r k

Mary is greater than Mark
because “y” has a Unicode
value greater than “k”

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 47

How Are Strings Compared?
 Upper case letters do not have the same value

as their lower case equivalents
 Upper case letters are less than lower case

 The >, <, >=, and <= operators can be used with
strings as well

 If one string is shorter than another, spaces are
substituted for the missing characters

 Spaces have a lower value than letters
 “Hi” has 2 spaces added if compared to “High”
 “Hi ” is less than “High”

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 48

The Empty String

 A space (or blank) is considered a character
 An empty string is a string with no characters

 A string with just spaces has characters in it
 The empty string is written as "", as in the

following code that tests for no input:

If txtInput.Text = "" Then
lblMessage.Text = "Please enter a value"

End If

13

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 49

ToUpper Method

 ToUpper method can be applied to a string
 Results in a string with lowercase letters

converted to uppercase
 The original string is not changed

littleWord = "Hello"
bigWord = littleWord.ToUpper()

' littleWord retains the value "Hello"
' bigWord is assigned the value "HELLO"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 50

ToLower Method

 The ToLower method performs a similar but
opposite purpose

 Can be applied to a string
 Results in a string with the lowercase letters

converted to uppercase
 The original string is not changed
bigTown = “New York"
littleTown = bigTown.ToLower()

' bigTown retains the value “New York"
' littleTown is assigned the value “new york"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 51

A Handy Use for ToUpper or ToLower
 ToUpper or ToLower can be used to perform

case insensitive comparisons of strings
 1st comparison below is false “Hello”<>“hello”
 2nd comparison is true

 ToLower converts both strings to lower case
 Causes “hello” to be compared to “hello”

 Tutorial 4-6 demonstrates how this is used

word1 = "Hello“
Word2 = “hello”
If word1 = word2 ‘false, not equal
If word1.ToLower() = word2.ToLower() ‘true, equal

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 52

IsNumeric Function

 This function accepts a string as an argument
and returns True if the string contains a number
Dim strNumber as String
strNumber = “576”
If IsNumeric(strNumber) ‘returns true
strNumber = “123abc”
If IsNumeric(strNumber) ‘returns false

 Use IsNumeric function to determine if a given
string contains numeric data

14

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 53

Determining the Length of a String

 The Length method determines the length of a
string, e.g.:

If txtInput.Text.Length > 20 Then
lblMessage.Text = “Enter fewer than 20 characters."

End If

Note: txtInput.Text.Length means to apply
the Length Method to the value of the Text property
of the Object txtInput

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 54

Trimming Spaces from Strings

 There are three Methods that remove spaces
from strings:
 TrimStart – removes leading spaces
 TrimEnd – removes trailing spaces
 Trim – removes leading and trailing spaces
greeting = " Hello "
lblMessage1.Text = greeting.TrimStart()

' Returns the value "Hello "

lblMessage1.Text = greeting.Trim()
‘ Returns the value "Hello"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 55

The Substring Method

 The Substring method returns a portion of a
string or a “string within a string” (a substring)

 Each character position is numbered sequentially
with the 1st character referred to as position zero

 StringExpression.Substring(Start)
 returns the characters from the Start position to

the end
 StringExpression.Substring(Start, Length)

 returns the number of characters specified by
Length beginning with the Start position

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 56

Substring Method Examples

Dim firstName As String
Dim fullName As String = "George Washington"
firstName = fullName.Substring(0, 6)

' firstName assigned the value "George"
' fullName is unchanged

lastName = fullName.Substring(7)
‘ lastName assigned the value “Washington”
‘ fullName unchanged

Position 0 Position 7

15

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 57

Search for a String Within a String

 Use the IndexOf method
 StringExpression.IndexOf(Searchstring)

 Searches the entire string for Searchstring
 StringExpression.IndexOf(SearchString, Start)

 Starts at the character position Start and
searches for Searchstring from that point

 StringExpr.IndexOf(SearchString, Start, Count)
 Starts at the character position Start and

searches Count characters for SearchString

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

 IndexOf will return the starting position of the
SearchString in the string being searched

 Positions are numbered from 0 (for the first)
 If SearchString is not found, a -1 is returned

 Tutorial 4-7 provides an opportunity to work with
several of the string methods

Dim name As String = "Angelina Adams"
Dim position As Integer
position = name.IndexOf("A", 1)

' position has the value 9

Position 0 Position 9

Slide 4- 58

IndexOf Method Examples

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Message Box4.8
Sometimes You Need a Convenient Way to Display a

Message to the User
This Section Discusses the Messagebox.Show Method,
Which Allows You to Display a Message in a Dialog Box

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 60

Message Box Arguments
 A message box is a dialog box with a user

message in a pop-up window
 The following can be specified

 Message - text to display within the box
 Caption - title for the top bar of the box
 Buttons - indicates which buttons to display
 Icon - indicates icon to display
 DefaultButton - indicates which button

corresponds to the Return Key
 All arguments but the Message are optional
 Use of an argument requires those before it

16

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 61

MessageBox Buttons Argument
MessageBoxButtons.AbortRetryIgnore

Displays Abort, Retry, and Ignore buttons
MessageBoxButtons.OK

Displays only an OK button
MessageBoxButtons.OKCancel

Displays OK and Cancel buttons
MessageBoxButtons.RetryCancel

Display Retry and Cancel buttons
MessageBoxButtons.YesNo

Displays Yes and No buttons
MessageBoxButtons.YesNoCancel

Displays Yes, No, and Cancel buttons

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MessageBox Icon Argument

Slide 4- 62

 The Icon argument
specifies a particular
type of icon to appear in
the message box

 There are 4 possible
icons shown to the left

 Note that some values
show the same icon

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 63

Example Message Box

MessageBox.Show("Do you wish to continue?", _
"Please Confirm", _
MessageBoxButtons.YesNo, _
MessageBoxIcon.Question)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 64

Which Button Was Clicked

 MessageBox returns a value indicating which button the
user clicked:
 DialogResult.Abort
 DialogResult.Cancel
 DialogResult.Ignore
 DialogResult.No
 DialogResult.OK
 DialogResult.Retry
 DialogResult.Yes

17

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 65

Which Button Was Clicked Example

Dim result As Integer
result = MessageBox.Show("Do you wish to continue?", _

"Please Confirm", MessageBoxButtons.YesNo)

If result = DialogResult.Yes Then
' Perform an action here

ElseIf result = DialogResult.No Then
' Perform another action here

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Select Case Statement4.9

In a Select Case Statement, One of
Several Possible Actions Is Taken,

Depending on the Value of an
Expression

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 67

Select Case Statement
 Similar to If…Then…ElseIf

 Performs a series of tests
 Conditionally executes the first true condition

 Select Case is different in that:
 A single test expression may be evaluated
 The test expression is listed once
 The possible values of the expression are

then listed with their conditional statements
 Case Else may be included and executed if

none of the values match the expression
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 68

Find Day of Week With Select Case
Select Case CInt(txtInput.Text)

Case 1
MessageBox.Show("Day 1 is Monday.")

Case 2
MessageBox.Show("Day 2 is Tuesday.")

Case 3
MessageBox.Show("Day 3 is Wednesday.")

Case 4
MessageBox.Show("Day 4 is Thursday.")

Case 5
MessageBox.Show("Day 5 is Friday.")

Case 6
MessageBox.Show("Day 6 is Saturday.")

Case 7
MessageBox.Show("Day 7 is Sunday.")

Case Else
MessageBox.Show("That value is invalid.")

End Select

18

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 69

Select Case With Multiple Values

Select Case strAnimal
Case "Dogs", "Cats"

MessageBox.Show ("House Pets")
Case "Cows", "Pigs", "Goats"

MessageBox.Show ("Farm Animals")
Case "Lions", "Tigers", "Bears"

MessageBox.Show ("Oh My!")
End Select

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 70

Select Case with Operators
Select Case intScore

Case Is >= 90
strGrade = “A”

Case 80 to 89
strGrade = “B”

Case 70 to 79
strGrade = “C”

Case 60 to 69
strGrade = “D”

Case 0 to 59
strGrade = “F”

Case Else
MessageBox.Show(“Invalid Score”)

End Select

 Tutorial 4-8 demonstrates the Select Case

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Introduction to Input
Validation4.10

Input Validation Is the Process of
Inspecting Input Values and Determining

Whether They Are Valid

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 72

Validation Example
 Output is only as good as the input

 “Garbage in, garbage out”
 Input validation is the process of inspecting user

input to see that it meets certain rules
 The TryParse method verifies that an input value

is in a valid numeric or date format
 Decision structures are often used to validate input

19

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 73

The TryParse Method
 Converts an input value to another format

 Verifies that input of integers, decimals, dates,
etc., are entered in an acceptable format

 Returns Boolean value indicating True if
conversion successful

 Returns False if unsuccessful
 Each numeric variable type has a TryParse

method
 Date & Boolean types include the TryParse

method as well

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 74

Verify Integer Entry With TryParse
 Use Integer.TryParse method to convert value

 txtInput.Text contains numeric string to convert
 intResult receives converted value
 TryParse returns True if input is an integer
 TryParse returns False if input is not an integer

Dim intResult As Integer
If Integer.TryParse(txtInput.Text, intResult) Then

lblMessage.Text = "Success!"
Else

lblMessage.Text = "Error: an integer was not found"
End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 75

Verify Date Entry With TryParse
 Use Date.TryParse method to convert value

 txtInput.Text contains date string to convert
 datBirth receives converted value
 TryParse returns True if input in date format
 TryParse returns False if input not a valid date
 Not used so Then clause indicates invalid date

Dim datBirth As Date
If Not Date.TryParse(txtInput.Text, datBirth) Then

lblMessage.Text = “Not a valid date!“
End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 76

Using If To Check Range of Values

' Validate the input to ensure that
' no negative numbers were entered.
If decSales < 0 Or decAdvance < 0 Then

MessageBox.Show("Please enter positive numbers" & _
" for sales and/or advance pay.“, “Error”)

EndIf

 Decision structures often used to validate input
 Example verifies that entries for both decSales

and decAdvance are positive numbers

20

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Radio Buttons and
Check Boxes4.11

Radio Buttons Appear in Groups of Two or More and
Allow the User to Select One of Several Possible Options
Check Boxes Allow an Item to Be Selected or Deselected

by Checking or Unchecking a Box

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 78

Radio Buttons
 Used when only one of several possible options

may be selected at one time
 Car radio buttons select one station at a time

 May be placed in a group box
 Group box defines a set of radio buttons
 Can select only one button within a group box
 Those on a form but not inside a group box

are considered members of the same group
 Radio buttons have a boolean Checked property

and a CheckChanged event

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 79

Checking Radio Buttons in Code

If radCoffee.Checked = True Then
MessageBox.Show("You selected Coffee")

ElseIf radTea.Checked = True Then
MessageBox.Show("You selected Tea")

ElseIf radSoftDrink.Checked = True Then
MessageBox.Show("You selected a Soft Drink")

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 80

Check Boxes
 Unlike radio buttons, can select many check

boxes at one time
 May also be placed in a group box

 Not limited to one selection within a group box
 Can select as many check boxes as you like

within the same group box
 Check boxes also have a boolean Checked

property and a CheckChanged event
 Tutorial 4-9 provides radio button and check box

examples

21

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 81

Checking Check Boxes in Code

If chkChoice4.Checked = True Then
MessageBox.Show("You selected Choice 4")

End If

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Class-Level Variables4.12
Class-level Variables Are Not Local to Any Procedure

In a Form They Are Declared Outside of Any
Procedure, and May Be Accessed by Statements in Any

Procedure in the Same Form

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 83

Advantages of Class-level Variables

 Variable scope refers to the portion of a program in which
that variable is visible

 Variables declared inside a procedure or method have
local scope
 Only visible inside that procedure or method

 Sometimes a variable needs to be visible to many
procedures or methods within a form

 Variables declared outside a procedure but within a form
have class scope
 These are visible throughout the form
 Makes communication between procedures easy

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Declaring a Class-Level Variable

 decTotalSalary - class-level variable
 Declared before first procedure in form class

 decWeeklyPay - local variable inside a procedure
Public Class Form1

Dim decTotalSalary As Decimal ‘Class-level variable

Private Sub btnAddWeekly_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnAddWeekly.Click

Dim decWeeklyPay As Decimal 'Local variable
decWeeklyPay = CDec(txtPay.Text)
decTotalSalary += decWeeklyPay

End Sub

Slide 4- 84

22

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 85

Class-level Variables Disadvantages

 Class-level variables should be used sparingly -
only when really needed

 Why?
 As programs grow larger, use of variables

becomes more difficult to keep track of
 The smaller the scope the better
 Smaller scope easier to keep track of

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Health Club
Membership Fee Calculator
Application

4.13
The Health Club Membership Fee Calculator uses

features discussed in this chapter, including If
statements, a Select Case statement, radio buttons, and

check boxes

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Health Club Fee Calculator Application

Slide 4- 87

The Bayou City Health and Fitness Club charges the following monthly
membership rates:

Standard adult membership: $40/month
Child (age 12 and under): $20/month
Student: $25/month
Senior citizen (age 65 and older): $30/month

The club also offers the following optional services, which increase the base
monthly fee:

Yoga lessons: add $10 to the monthly fee
Karate lessons: add $30 to the monthly fee
Personal trainer: add $50 to the monthly fee

Discounts are available, depending on the length of membership:
1-3 months: No discount
4-6 months: 5% discount
7-9 months: 8% discount
10 or more months: 10% discount

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Health Club Fee Calculator Application

Slide 4- 88

 The manager of the club has asked you to create a
Health Club Membership Fee Calculator application.

 It should allow the user to select a membership rate,
select optional services, and enter the number of months
of the membership.

 It should calculate the member’s monthly and total
charges for the specified number of months.

 The application should also validate the number of
months entered by the user.

 An error message should be displayed if the user enters a
number less than 1 or greater than 24. (Membership fees
tend to increase every two years, so there is a club policy
that no membership package can be purchased for more
than 24 months at a time.)

23

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Health Club Fee Calculator Form

Slide 4- 89 Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Health Club Fee Calculator Form

Slide 4- 90

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Algorithm Chart

Slide 4- 91

Health Club
Membership
Fee Calculator
Application

Compute Button Click Event:
 Validate the number of months entered by the user.

Display error message if the input is not valid.
 Calculate monthly fees including optional services with

discounts.
 Calculate total fee.
 Display monthly fees.
 Display total fee.

Exit Button Click Event:
 Close the application/window.

Clear Button Click Event:
 Clear text boxes, labels, and check boxes.
 Reset radio buttons so that Adult radiobutton is selected.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Compute Button Click Event:
 Validate the number of months entered by the user.

Display error message if the input is not valid.
 Check if the months entered is an integer:

If Months is not an integer then
Display error message

End If
 Check if the months entered is between 1 and 24

including 1 and 24:
If Months < 1 or Months > 24 then

Display error message
End If

Slide 4- 92

24

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Compute Button Click Event:
 Calculate monthly fees including optional services with

discounts.
 Compute base fee:

If Adult radio button is selected then
Fee = adult rate

Else If Child radio button is selected then
Fee = Child rate

Else If Student radio button is selected then
Fee = Student rate

Else If Senior radio button is selected then
Fee = Senior rate

End If

Slide 4- 93 Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Compute Button Click Event:

 Add options:
If Yoga check box is checked then

Fee = Fee + Yoga
Else If Yoga check box is checked then

Fee = Fee + Karate
Else If Yoga check box is checked then

Fee = Fee + Trainer
End If

Slide 4- 94

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Compute Button Click Event:
 Compute discount based on # of months:

If months < 4 then
Discount = 0

Else If months < 7 then
Discount = Fee * .05

Else If months < 10 then
Discount = Fee * .08

Else If months >= 10 then
Discount = Fee * .1

End If
 Compute base fee with discount:

Fee = Fee – Discount

Slide 4- 95 Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Compute Button Click Event:

 Calculate total fee.
Total = Fee * Months

 Display monthly fees.
FeeLable.Text = Fee.ToString("c")

 Display total fee.
Total.Text = Total.ToString("c")

Slide 4- 96

25

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Clear Button Click Event:

 Clear all text boxes,
TextBoxName.Clear()

 Clear labels,
LabeName.Text=""

 Clear check boxes.
CheckeBoxName.Checked = False

 Reset radio buttons so that Adult radiobutton is
selected.
RadioButtonName.Checked = True

Slide 4- 97 Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Exit Button Click Event:

Close()

Slide 4- 98

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calculate Button Click Event Flowchart

Slide 4- 99 Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Base Monthly Fee Calculation Flowchart

Slide 4- 100

Uses a series
of ElseIf
statements

26

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Calculate Optional Services Flowchart

Slide 4- 101

Uses several
If...Then
statements

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Compute Discount Flowchart

Slide 4- 102

Uses a Select Case statement

