

Math 1404 Precalculus Functions -- What is a function?

Number of hours worked 0 10 20 30 40 Maximum credit hours 16 13 10 7 4	they must work each week.		e amount of time
Maximum credit hours 16 13 10 7 4	Number of hours worked 0 10	20 30	40
	Maximum credit hours 16 13	10 7	4

Math 1404 Precalculus

Functions -- What is a function?

9

Function Notation

Consider the function

 $f(x) = x^2 + 5x$ [Think: $f() = ()^2 + 5 \cdot ()$]

The "output that matches the input 1" is **expressed** symbolically as f(1), read " \hat{f} of 1." **Evaluate** f(1) means "use the rule to compute the matching output." Hence, Problem: **Evaluate** f(1). Answer: $f(1) = (1)^2 + 5 \cdot (1) = 1 + 5 = 6$ Write your answer in function notation. - Evaluate f(-1)

Functions -- What is a function?

Math 1404 Precalculus

Problem 42 p. 156

Find domain of the function *f*

$$f(x) = \frac{1}{3x - 6}$$

Domain of f =

Math 1404 Precalculus

Math 1404 Precalculus

Functions -- What is a function?

Functions -- What is a function?

J	Divide Arizona To encourage conservatio of Dry Gulch, Arizona, ha a new rate structure for w. for its residential custome first 8,000 gallons used pp the rate is \$4.25 per 1,000 When the customer uses 8 gallons up to 12,000 gallons any amount over 12,000 g customer pays a penalty o addition to \$7.25 per 1,000 used. Let <i>P</i> (g) be the ama residential customer for g housand gallons of wate month.	s approved ter usage s. For the r month, gallons. used. For allons, the 525 in 0 gallons unt paid by consuming $p(g) = \begin{cases} 4.25 \cdot g, \\ 10 + 5.25 \cdot g, \\ 25 + 7.25 \cdot g, \\ 25 + 7.25 \cdot g, \end{cases}$	if $0 \le g \le 8$ if $8 < g \le 12$ if $g > 12$
I	Math 1404 Precalculus	Functions Graphs of functions	29

Example

Consider the price p (in dollars) for purchasing A pounds of oranges. The price p is directly proportional to number of pounds A purchased. If the price of the oranges is \$0.68 per pound,. What is the symbol rule for the function relating the price p to the number of pounds A purchased?

At a constant rate of speed, the distance d traveled by an object is directly proportional to the elapsed amount of time t the object travels. The constant of proportionality k is the rate of speed of the object. For example, the distance that the International Space Station travels when making one orbit of the Earth is about 25,733 miles. The time it takes to make an orbit is about one-and-a-half hr. What is the symbol rule for the function relating the distance d traveled by the space station to the elapsed amount of time t the space station travels?

Example

Math 1404 Precalculus

Functions -- Graphs of functions

36

Functions -- Graps of functions

Example

For a given distance, the amount of time t required to cover the distance is inversely proportional to the rate of speed r. For example, suppose a car travels from Houston to Dallas, Texas. What is the symbol rule for the function relating the time tneeded for the car to cover this distance at the rate of speed r, if the car can cover this distance in 4 hr at 60 mi/hr?

Math 1404 Precalculus

Functions -- Graphs of functions

38

Joint Variation Functions

A *joint variation function* has a symbol rule that can be written in the form

$$z = kxy$$
 or $z = k\frac{x}{y}$

depends on whether *z* jointly varies directly or *z* varies directly as *x* and inversely as *y*, where *x* and *y* are the input, *z* is the matching output, and *k* is a positive real number, called *constant of proportionality*

Math 1404 Precalculus Functions -- Graphs of functions

Math 1404 Precalculus

Functions -- Graphs of functions

Problems on Page 182

change

Year	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	199
CD players sold	512	520	413	410	468	510	590	607	732	612	584
The table s store i a) W		year 1		999.	f chang	ge of sa	ales be	tween	1989 a	and 19	99?

Extreme Values of Quadratic Functions The general form of *quadratic function* is $f(x) = ax^2 + bx + c$ where *a*, *b*, and *c* are real number and $a \neq 0$. - The graph of quadratic function is *parabola*. - The *y* - intercept of any quadratic function is always at y = c.

Math 1404 Precalculus

Functions -- Extreme Values of Functions

From a simple Quadratic Function

Sketch the graph of the following quadratic functions

Standard form of Quadratic Functions

	rm of a quadratic function is $f(x) = a(x-h)^2 + k$	
	re real numbers and the vertex i	s at
· · · · ·	the parabola is <i>concave up</i> and the the <i>lue</i> of the function f is k occurs at $x =$	
,	the parabola is <i>concave down</i> and the <i>lue</i> of the function f is k occurs at $x =$	
Math 1404 Precalculus	Functions Extreme Values of Functions	80

A hockey team plays in an arena with a searing capacity of 15,000 spectators. With the ticket price set at \$14, average attendance at recent games has been 9500. A market survey indicates that for each dollar the ticket price is lowered, the average attendance increases by 1000.

a) Find a function that models the revenue in terms of ticket price.b) What ticket price is so high that no one attends, and hence no revenue is generated?

c) Find the price that maximizes revenue from ticket sales. revenue = ticket price × attendance

ticket price = xattendance = 1000(14 - x) + 9500 revenue = x(1000(14 - x) + 9500)

```
Math 1404 Precalculus
```

Functions -- Modeling with Functions

obtain week price	facture ned fro ly sale of \$2. at a pr	rom ti les of 2.30 p	n the t of the) per b	test ar e cere box, s	re give al base ales o	en in th ed upo f the c	he foll on the ereal	owing price p were 1	table er bor 40 bo	and w x. For xes pe	ill be exam r weel	used to ple, at c, whe	o pred	ict the tore a	t a
Price per box (in \$)	2.30) 2.1	2.10	1.80	1.90	2.50	2.80	1.99	1.90	2.25	2.39	2.37	2.10	2.50	2.5

