## The Precise Definition of a Limit

Let $f$ be a function defined on some open interval that contains the number $a$, except possibly at $a$ itself. Then we say that the limit of $f(x)$ as $x$ approaches $a$ is $L$, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\epsilon>0$ there is a corresponding number $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$

## Now let's put this definition to work.

Prove that $\lim _{x \rightarrow 3}(7 x+2)=23$.
(First we must guess a value for $\boldsymbol{\delta}$.)
Let $\epsilon$ be any positive number. We want to find a number $\delta$ such that
$|(7 x+2)-23|<\epsilon$ whenever $0<|x-3|<\delta$.
Now, $|(7 x+2)-23|=|7 x-21|=|7(x-3)|=|7| \cdot|x-3|=7|x-3|$.
So, we want $7|x-3|<\epsilon$ whenever $0<|x-3|<\delta$
that is $|x-3|<\epsilon / 7$ whenever $0<|x-3|<\delta$.
Choose $\delta=\epsilon / 7$.
(Now, we are ready to write a proof that is to show this number $\delta$ works.)
Proof: Given $\epsilon>0$, choose $\delta=\epsilon / 7$. Then, whenever $0<|x-3|<\delta$,

$$
\begin{aligned}
& |(7 x+2)-23|=|7 x-21|=|7(x-3)|=|7| \cdot|x-3|= \\
& 7|x-3|<7 \delta=7 \cdot \epsilon / 7=\epsilon \text {. } \\
& \text { Thus, }|(7 x+2)-23|<\epsilon \text { whenever } 0<|x-3|<\delta . \\
& \text { Therefore, } \lim _{x \rightarrow 3}(7 x+2)=23 \text {. }
\end{aligned}
$$

## Go to the next page and you practice.

Prove that $\lim _{x \rightarrow 2}(5 x+8)=18$.
(First we must guess a value for $\boldsymbol{\delta}$.)
Let $\epsilon$ be any positive number. We want to find a number $\delta$ such that
$\qquad$ whenever $\qquad$ ـ.

Now, $\qquad$ .

So, we want $\qquad$ whenever $\qquad$ that is $\qquad$ whenever $\qquad$

Choose $\delta=$ $\qquad$ .
(Now, we are ready to write a proof that is to show this number $\delta$ works.)
Proof: Given $\epsilon>0$, choose $\delta=$ $\qquad$ Then, whenever $\qquad$ _,
$\qquad$
$\qquad$ ـ.

Thus, $\qquad$ whenever $\qquad$ .

Therefore, $\qquad$ _.

## Let's do one more.

Prove that $\lim _{x \rightarrow-1}(3 x-7)=-10$.

