The Precise Definition of a Limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the **limit of** f(x) as x approaches a is L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$

Now let's put this definition to work.

Prove that $\lim_{x\to 3} (7x+2) = 23$. (First we must guess a value for δ .) Let ϵ be any positive number. We want to find a number δ such that $|(7x+2)-23| < \epsilon$ whenever $0 < |x-3| < \delta$. Now, $|(7x+2)-23| = |7x-21| = |7(x-3)| = |7| \cdot |x-3| = 7|x-3|$. So, we want $7|x-3| < \epsilon$ whenever $0 < |x-3| < \delta$ that is $|x-3| < \epsilon/7$ whenever $0 < |x-3| < \delta$. Choose $\delta = \epsilon/7$. (Now, we are ready to write a proof that is to show this number δ works.) Proof: Given $\epsilon > 0$, choose $\delta = \epsilon/7$. Then, whenever $0 < |x-3| < \delta$. $|(7x+2)-23| = |7x-21| = |7(x-3)| = |7| \cdot |x-3| = 7|x-3| < \delta$. $|(7x+2)-23| = |7x-21| = |7(x-3)| = |7| \cdot |x-3| = 7|x-3| < \delta$. Thus, $|(7x+2)-23| < \epsilon$ whenever $0 < |x-3| < \delta$. Therefore, $\lim_{x\to 3} (7x+2) = 23$.

Go to the next page and you practice.

Let ϵ be any positive n	umber. We want to find a number δ such	that
	whenever	
Now,		
So, we want	whenever	
that is	whenever	·
Choose $\delta = $		
Norre and and he day		
	b write a proof that is to show this number choose $\delta = $ Then, whenever	
$Proof: \text{Given } \epsilon > 0,$	-	
$Proof$: Given $\epsilon > 0$, 	choose $\delta = $ Then, whenever	
$Proof$: Given $\epsilon > 0$, 	choose $\delta = $ Then, whenever	