Name: ______________________________

Lab 1: Information Representation -- Number Systems, page 5 of 5

	[image: image1.png]

	Department of Computer

and

Mathematical Sciences
	
	CS 2401

Assembly Language
	1

Lab 1: Information Representation -- Number Systems

Objectives:

The main objective of this lab is to learn how numbers are represented in different numbering systems.

Task 1: Unsigned Binary Numbers
Computers can only understand machine language that is in sequence of 0s and 1s. So it is necessary for us to know how binary numbers represent decimal numbers. The focus will be on integers only. One important thing is we should be able to convert binary numbers to decimal and vice versa. There are four number systems that will be discussed in this lab: unsigned binary, signed and magnitude, 1’s complement and 2’s complement number systems. Note that unsigned binary is used to represent only positive decimal numbers and zero.

There are two ways to convert a decimal number to a binary number. First approach is to divide the given decimal number by 2 successively and collect the remainders in backward order. Second approach is to use positional notation in reverse, that is, make use of the value in each position (20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,…) to determine which position is a 1. To do this, first, determine which position that has the largest value but less than or equal to the given decimal number and mark that position as a 1. Second, subtract that value from the given decimal number. Repeat the process with the new value from the second step. The process will be terminated if the value in the second step is 0.

Activity 1.1: Convert the decimal 209 to an unsigned binary using the successively division by 2.
	

Activity 1.2: Convert the decimal 209 to an unsigned binary using the reversed-positional notation.
	

Task 2: Signed and Magnitude
In signed and magnitude, an extra bit at the left most bit or the most significant bit is used to represent the sign of the number, where 0 indicates positive and 1 indicates negative. The following procedure is used to convert a negative decimal to signed and magnitude:

1) Convert the magnitude of the given number to a binary,

2) Pad zeroes as required,

3) Change the leftmost bit to a 1.
Activity 2.1: Convert the decimal 53 to an 8-bit signed and magnitude.

	

Activity 2.2: Convert the decimal (53 to an 8-bit signed and magnitude.

	

Task 3: 1’s Complement
To convert a negative decimal to a 1’s complement, the following formula is used:

N' = 2n (N – 1

 where n is the number of bits used to represent the number and N is the magnitude of the given decimal number in binary. The above formula can be described as the following process:

1) Convert the magnitude of the given number to a binary,

2) Pad zeroes as required,

3) Bit wise complement.

Note that the procedure of converting a positive decimal to a 1’s complement is the same as converting a decimal to an unsigned binary.

Activity 3.1: Convert the decimal 53 to an 8-bit 1’s complement.
	

Activity 3.2: Convert the decimal (53 to an 8-bit 1’s complement.

	

Task 4: 2’s Complement
To convert a negative decimal to a 2’s complement, the following formula is used:

N' = 2n (N

where n is the number of bits used to represent the number and N is the magnitude of the given decimal number in binary. The above formula can be described as the following process:

1) Convert the magnitude of the given number to a binary,

2) Pad zeroes as required,

3) Bit wise complement,

4) Add 1.

Note that the procedure of converting a positive decimal to a 2’s complement is the same as converting a decimal to an unsigned binary.

Activity 4.1: Convert the decimal 53 to an 8-bit 2’s complement.
	

Activity 4.2: Convert the decimal (53 to an 8-bit 2’s complement.

	

Task 5: Convert signed and Magnitude, 1's Complement, and 2’s Complement to Decimal
We have to be able to convert negative numbers in binary representation back to decimal as well. To do this, we need to know what representation that given binary is in, i.e., either signed and magnitude, or 1' complement, or 2's complement. If it is signed and magnitude, first drop the sign bit. Then convert the remaining bits to decimal. The result will be negative of that decimal. If it is in 1's complement, first do bit wise complement. Then convert it to decimal. The result will be negative of that decimal. If it is in 2's complement, first do bit wise complement and add 1. Then convert it to decimal. The result will be negative of that decimal.

Activity 5.1: Convert the signed and magnitude 10111010SM to decimal.
	

Activity 5.2: Convert the 1’s complement 101110101’s to decimal.

	

Activity 5.3: Convert the 2’s complement 101110102’s to decimal.

	

Task 6: Floating-point numbers
To represent large integer numbers or real numbers (numbers with decimal point), called floating-point numbers, we use IEEE standards. There are two representations: single precision (32 bits) and double precision (64bits). Floating-point number representation in binary with single precision has three parts: sing bit, exponent bits (8 bits with 127 bias), and mantissa bits (23 bits). For double precision representation also has three parts: sing bit, exponent bits (11 bits with 1023 bias), and mantissa bits (52 bits). The procedure of converting floating-point numbers to single-precision format is:

1. The leftmost bit is 0 for positive and 1 for negative.

2. Convert the magnitude to decimal binary, i.e.

a. Convert the integral to binary

b. Convert the fraction part to binary

3. Convert the binary decimal number to scientific notation

4. Add a bias of 12710 to the exponent and convert it to binary to form the next 8 bits.

5. Fraction bits form the last 23 bits.
Activity 6.1: Convert the floating-point number 23.125 to binary (Hex) using the single-precision representation.
	

Activity 6.2: Convert the floating-point number –14.25 to binary (Hex) using the single-precision representation.
	

Activity 6.3: Convert the floating-point number 23.125 to binary (Hex) using the double-precision representation.
	

