

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Chapter 4

Making Decisions

Copyright © 2011 Pearson Addison-Wesley

Introduction

• This chapter covers the Visual Basic decision
statements
– If…Then
– If…Then…Else
– If…Then…ElseIf
– Select Case

• It also discusses the use of
– Radio Buttons
– Check Boxes
– Message Boxes
– Input Validation

Chapter 4 – Slide 3

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.1

THE DECISION STRUCTURE

The decision structure allows a program’s logic to have more than
one path of execution.

Copyright © 2011 Pearson Addison-Wesley

Order of Statement Execution

• Thus far, our code has been executed sequentially
in a sequence structure

• To write meaningful programs we need multiple
paths of execution
– Some statements should be executed under certain

circumstances in a decision structure
– This chapter presents the means to execute

statements conditionally
– Next chapter presents the means to execute the same

statements repeatedly

Chapter 4 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

The Decision Structure

• Flowchart of a
typical decision
structure

• Evaluate the
condition
– Is it cold outside?

• Execute or skip
over some code
– If yes, wear a coat

Chapter 4 – Slide 6

Is it cold outside?

Wear a coat.

True

False

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.2

THE IF...THEN STATEMENT

The If...Then statement causes other statements to execute only
when an expression is true.

Copyright © 2011 Pearson Addison-Wesley

General Format

• If the expression is True, execute the
statements between If…Then and End If

• Otherwise, the statements are skipped

Chapter 4 – Slide 8

If expression Then
 statement
 (more statements may follow)
End If

Copyright © 2011 Pearson Addison-Wesley

Relational Operators

• Usually a condition is formed using a relational
operator

• A relational operator determines if a specific
relationship exists between two values
 > Greater than
 < Less than
 = Equal to
 <> Not equal to
 >= Greater than or equal to
 <= Less than or equal to

Chapter 4 – Slide 9

Copyright © 2011 Pearson Addison-Wesley

Boolean Expressions

• Relational operators are binary – meaning
they use two operands, for example:

 length > width Is length greater than width?
 size <= 10 Is size less than or equal 10?

• Relational operators are used in Boolean

expressions which yield a true or false result

Chapter 4 – Slide 10

Copyright © 2011 Pearson Addison-Wesley

Putting It All Together

 If…Then statement examples:

Chapter 4 – Slide 11

If decSales > 50000 Then
 MessageBox.Show("You've earned a bonus!")
 decCommissionRate = 0.12
 intDaysOff = intDaysOff + 1
End If

If decSales > 50000 Then
 MessageBox.Show("You've earned a bonus!")
End If

Copyright © 2011 Pearson Addison-Wesley

Rules to Remember

• The If and the Then must be on the same line
• Only a remark may follow the Then
• The End If must be on a separate line
• Only a remark may follow the End If

• Tutorial 4-1 presents an application that uses

the If…Then statement

Chapter 4 – Slide 12

Copyright © 2011 Pearson Addison-Wesley

Programming Style

• The code between the If…Then and the End If
is indented

• Visual Basic does not require this
• It is a convention among programmers to aid

in the readability of programs
• By default, the Visual Basic editor will

automatically do this indentation as you enter
your program

Chapter 4 – Slide 13

Copyright © 2011 Pearson Addison-Wesley

Using Relational Operators with Math Operators

• Math operators are evaluated before relational operators

• intX + intY and intA - intB are evaluated first
• Most programmers prefer to use parentheses to clarify the

order of operations

Chapter 4 – Slide 14

If intX + intY > intA - intB Then
 lblMessage.Text = "It is true!"
End If

If (intX + intY) > (intA – intB) Then
 lblMessage.Text = "It is true!"
End If

Copyright © 2011 Pearson Addison-Wesley

Using Function Calls with Relational Operators

• Either or both relational operator operands
may be function calls

• The return value of the function call is
compared to the value using the relational
operator

Chapter 4 – Slide 15

If CInt(txtInput.Text) < 100 Then
 lblMessage.Text = "It is true!"
End If

Copyright © 2011 Pearson Addison-Wesley

Using Boolean Variables as Flags

• A flag is a Boolean variable that signals when some
condition exists in the program

• Since a Boolean variable is either True or False, it can
be used as the condition of an If…Then statement
– Since a Boolean variable already evaluates to True or False,

an = operator is not required

Chapter 4 – Slide 16

If blnQuotaMet Then
 lblMessage.Text = "You have met your sales quota"
End If

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.3

THE IF...THEN...ELSE STATEMENT

The If...Then...Else statement executes one group of statements
if the Boolean expression is true and another group of statements if
the Boolean expression is false.

Copyright © 2011 Pearson Addison-Wesley

General Format

• If the expression is True
– execute the statements between If…Then and Else

• If the expression is False
– execute the statements between Else and End If

 Chapter 4 – Slide 18

If expression Then
 statement
 (more statements may follow)
Else
 statement
 (more statements may follow)
End If

If expression Then
 statement
 (more statements may follow)
Else
 statement
 (more statements may follow)
End If

Copyright © 2011 Pearson Addison-Wesley

Flowchart and Pseudocode

Chapter 4 – Slide 19

dblTemperature
< 40?

Display Message
A little cold, isn’t it?

True False

Display Message
Nice weather we’re

having!

If temperature < 40 Then
 Display the message “A little cold, isn’t it?”
Else
 Display the message “Nice weather we’re having!”
End If

Copyright © 2011 Pearson Addison-Wesley

Two Mutually Exclusive Choices

• The If…Then…Else has two choices
– The condition will either be True or False
– So either the Then clause or Else clause will be

executed
– These are two mutually exclusive choices

• Tutorial 4-2 contains an example of the
If…Then…Else construct

Chapter 4 – Slide 20

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.4

THE IF...THEN...ELSEIF STATEMENT

The If...Then...ElseIf statement is like a chain of
If...Then...Else statements. They perform their tests,
one after the other, until one of them is found to be true.

Copyright © 2011 Pearson Addison-Wesley

Multiple Possible Choices

• The If…Then…ElseIf statement allows for an
entire series of possible choices

• In pseudocode:

Chapter 4 – Slide 22

If it is very cold Then
 Wear a coat
Elseif it is chilly
 Wear a light jacket
Elseif it is windy
 Wear a windbreaker
Elseif it is hot
 Wear no jacket

Copyright © 2011 Pearson Addison-Wesley

Multiple Possible Choices

• Each of the series of conditions in an
If…Then…ElseIf is tested in sequence

• When a condition is true, the remaining
conditions are ignored

• The order of the conditions is vital
– Wrong order can result in wrong decision - called a

logic error
– What if it’s chilly and windy?
– If windy is tested before chilly, you’d go out with a

windbreaker when you need a jacket

Chapter 4 – Slide 23

Copyright © 2011 Pearson Addison-Wesley

General Format

• This construction is like a chain of If...Then...Else statements
• The Else part of one statement is linked to the If part of another

Chapter 4 – Slide 24

If expression Then
 statement
 (more statements may follow)
ElseIf expression Then
 statement
 (more statements may follow)
(put as many ElseIf statements as necessary)
Else
 statement
 (more statements may follow)

Copyright © 2011 Pearson Addison-Wesley

Flowchart

Chapter 4 – Slide 25

Very cold?

Chilly?

Windy?

Wear a heavy jacket
True

Wear a light jacket
True

Wear a windbreaker
True

False

False

False

Hot? Wear no jacket
True

False

Copyright © 2011 Pearson Addison-Wesley

Example of ElseIf Usage

 • Does the order of these
conditions matter?

• What happens if we
reverse the order?

Chapter 4 – Slide 26

If dblAverage < 60 Then
 lblGrade.Text = "F"
ElseIf dblAverage < 70 Then
 lblGrade.Text = "D"
ElseIf dblAverage < 80 Then
 lblGrade.Text = "C"
ElseIf dblAverage < 90 Then
 lblGrade.Text = "B"
ElseIf sngAverage <= 100 Then
 lblGrade.Text = "A"
End If

Copyright © 2011 Pearson Addison-Wesley

Using Only If…Then Statements

 • Does this code function
correctly?

• What is assigned to
lblGrade for a 65
average? 75?

Chapter 4 – Slide 27

If dblAverage < 60 Then
 lblGrade.Text = "F"
End If
If dblAverage < 70 Then
 lblGrade.Text = "D"
End If
If dblAverage < 80 Then
 lblGrade.Text = "C"
End If
If dblAverage < 90 Then
 lblGrade.Text = "B"
End If
If dblAverage <= 100 Then
 lblGrade.Text = "A"
End If

Copyright © 2011 Pearson Addison-Wesley

Using a Trailing Else

• A sequence of ElseIf
statements may end with
a plain Else, called a
trailing Else

• If none of the conditions
are True, the trailing Else
statement(s) will be
executed

• The trailing Else catches
any value that falls
through the cracks

Chapter 4 – Slide 28

' Display the letter grade.
If dblAverage < 60 Then
lblGrade.Text = "F"
ElseIf dblAverage < 70 Then
lblGrade.Text = "D"
ElseIf dblAverage < 80 Then
lblGrade.Text = "C"
ElseIf dblAverage < 90 Then
lblGrade.Text = "B"
ElseIf dblAverage <= 100 Then
lblGrade.Text = "A"
Else
lblGrade.Text = "Invalid Score"
End If

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.5

NESTED IF STATEMENTS

A nested If statement is an If statement in the conditionally
executed code of another If statement. (In this section, we use the
term If statement to refer to an If . . . Then, If...Then...Else,
or If...Then...ElseIf statement.)

Copyright © 2011 Pearson Addison-Wesley

If Statements Within If Statements

• Any type of statement may be used inside a
set of Then, Else, or ElseIf statements of an If

• This includes other If statements
• If statements within If statements create a

more complex decision structure called a
Nested If

Chapter 4 – Slide 30

Copyright © 2011 Pearson Addison-Wesley

Nested If Example

• Tutorial 4-4 examines an application that uses
nested If Statements

• In the application, the customer must meet
one of the following qualifications:
– Earn $30,000 per year or more and have worked

in his or her current job for more than two years.
– Have worked at his or her current job for more

than five years.

Chapter 4 – Slide 31

Copyright © 2011 Pearson Addison-Wesley

Examining the Nested If Statement

Chapter 4 – Slide 32

If dblSalary > 30000 Then
 If intYearsOnJob > 2 Then
 lblMessage.Text = "Applicant qualifies."
 Else
 lblMessage.Text = "Applicant does not qualify."
 End If
Else
 If intYearsOnJob > 5 Then
 lblMessage.Text = "Applicant qualifies."
 Else
 lblMessage.Text = "Applicant does not qualify."
 End If
End If

Copyright © 2011 Pearson Addison-Wesley

Flowchart of Nested If Statements

Chapter 4 – Slide 33

Years at
current job

 > 2?

Salary > $30,000?

Years at
current job

 > 5?

Display message
 The applicant

qualifies.

Display message
 The applicant does

not qualify.

Display message
 The applicant

qualifies.

Display message
 The applicant does

not qualify.

False

False False

True

True True

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.6

LOGICAL OPERATORS

Logical operators combine two or more Boolean expressions into a
single expression.

Copyright © 2011 Pearson Addison-Wesley

Visual Basic Logical Operators

• Visual Basic provides Logical operators that can combine
multiple Boolean expressions into a compound expression

Chapter 4 – Slide 35

Operator Effect
And Combines two expressions into one. Both expressions must be true

for the overall expression to be true.

Or Combines two expressions into one. One or both expressions must
be true for the overall expression to be true. It is only necessary for
one to be true, and it does not matter which.

Xor Combines two expressions into one. One expression (not both) must
be true for the overall expression to be true. If both expressions are
true, or both expressions are false, the overall expression is false.

Not Reverses the logical value of an expression: makes a true expression
false and a false expression true.

Copyright © 2011 Pearson Addison-Wesley

The And Operator

• The And operator combines two expressions into one
• The following If statement uses the And operator:

• Both expressions must be true for the overall expression to be
true, as shown in the following truth table:

Chapter 4 – Slide 36

Expression 1 Expression 2 Expression 1 And Expression 2
True False False

False True False

False False False

True True True

If intTemperature < 20 And intMinutes > 12 Then
 lblMessage.Text = "The temperature is in the danger zone."
End If

Copyright © 2011 Pearson Addison-Wesley

Short-Circuit Evaluation with AndAlso

• When using the And operator, if the first
expression is false, then the entire expression
will be false

• If there is no need to evaluate the second
expression, it can be skipped using a method
called short-circuit evaluation

• In Visual Basic you use the AndAlso operator
to achieve short-circuit evaluation

Chapter 4 – Slide 37

Copyright © 2011 Pearson Addison-Wesley

Short-Circuit Evaluation with AndAlso

• In the following example, assuming that dblX
is less than or equal to zero, CheckValue is not
called and Expression is False is displayed:

Chapter 4 – Slide 38

If dblX > 0 AndAlso CheckValue(dblX) Then
lblResult.Text = "Expression is True"
Else
lblResult.Text = "Expression is False"
End If

Copyright © 2011 Pearson Addison-Wesley

The Or Operator

• The Or operator combines two expressions into one
• The following If statement uses the Or operator:

• One or both expressions must be true for the overall
expression to be true, as shown in the following truth table:

Chapter 4 – Slide 39

Expression 1 Expression 2 Expression 1 Or Expression 2
True False True

False True True

False False False

True True True

If intTemperature < 20 Or intTemperature > 100 Then
 lblMessage.Text = "The temperature is in the danger zone."
End If

Copyright © 2011 Pearson Addison-Wesley

Short Circuit-Evaluation with OrElse

• When using the Or operator, if the first
expression is true, then the entire expression
will be true

• If there is no need to evaluate the second
expression, it can be skipped using short-
circuit evaluation with the OrElse operator

Chapter 4 – Slide 40

Copyright © 2011 Pearson Addison-Wesley

Short Circuit-Evaluation with OrElse

• In the following example, if dblX is equal to
zero, CheckValue is not called and Expression
is True is displayed:

Chapter 4 – Slide 41

If dblX = 0 OrElse CheckValue(dblX) Then
lblResult.Text = "Expression is True"
End If

Copyright © 2011 Pearson Addison-Wesley

The Xor Operator

• The Xor operator combines two expressions into one
• Xor stands for exclusive or
• The following If statement uses the Xor operator:

• One but not both expressions must be true for the overall expression to be

true, as shown in the following truth table:

Chapter 4 – Slide 42

Expression 1 Expression 2 Expression 1 Xor Expression 2
True False True

False True True

False False False

True True False

If decTotal > 1000 Xor decAverage > 120 Then
lblMessage.Text = "You may try again."
End If

Copyright © 2011 Pearson Addison-Wesley

The Not Operator

• The Not operator takes a Boolean expression and reverses its
logical value

• The following If statement uses the Not operator:

• If the expression is true, the Not operator returns False, and if
the expression is false, it returns True, as shown in the
following truth table:

Chapter 4 – Slide 43

If Not intTemperature > 100 Then
lblMessage.Text = "You are below the maximum temperature."
End If

Expression Not Expression
True False

False True

Copyright © 2011 Pearson Addison-Wesley

Checking Numerical Ranges

• The And operator is best for checking if a
value is inside a range of numbers

• The Or operator is best for checking if a value
is outside a range of numbers

Chapter 4 – Slide 44

If intX >= 20 And intX <= 40 Then
lblMessage.Text = "The value is in the acceptable range."
End If

If intX < 20 Or intX > 40 Then
lblMessage.Text = "The value is outside the acceptable range."
End If

Copyright © 2011 Pearson Addison-Wesley

Precedence of Logical Operators

• Logical operators have an order of precedence
just as arithmetic operators do

• From highest to lowest precedence
– Not
– And
– Or
– Xor

• As with arithmetic operations, parentheses
are often used to clarify order of operations

Chapter 4 – Slide 45

Copyright © 2011 Pearson Addison-Wesley

Precedence of Logical Operators

• For example, in the statement

 If x < 0 And y > 100 Or z = 50

– x < 0 And y > 100 is evaluated first
– If the And condition is true, we then evaluate
– True Or z = 50
– If the And condition is false, we then evaluate
– False Or z = 50

• If the Or condition is to be evaluated first, parentheses

must be used
 If x < 0 And (y > 100 Or z = 50)

Chapter 4 – Slide 46

Copyright © 2011 Pearson Addison-Wesley

Math, Relational, & Logical Operators

• Evaluate the following if: a=5, b=7, x=100, y=30
 If x > a * 10 And y < b + 20
Evaluating the math operators leaves us with
 If x > 50 And y < 27
Evaluating the relational operators leaves
 If True And False
Evaluating the logical operators leaves
 False

• Parentheses make order of operations clear
 If (x > (a * 10)) And (y < (b + 20))

Chapter 4 – Slide 47

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.7

COMPARING, TESTING, AND
WORKING WITH STRINGS

Visual Basic provides various methods in the String class that
make it easy to work with strings. This section shows you how to
use relational operators to compare strings, and discusses several
functions and string methods that perform tests and manipulations
on strings.

Copyright © 2011 Pearson Addison-Wesley

Strings Can Be Compared

• Relational operators can be used to compare
strings and string literals

Chapter 4 – Slide 49

strName1 = "Mary"
strName2 = "Mark"
If strName1 = strName2 Then
 lblMessage.Text = " Names are the same"
Else
 lblMessage.Text = " Names are NOT the same"
End If

If strMonth <> "October" Then
 ' statement
End If

Copyright © 2011 Pearson Addison-Wesley

How Are Strings Compared?

• Characters are stored as
numeric values

• Visual Basic uses Unicode
• The Unicode numbering

system represents:
– All letters of the alphabet
– Printable digits 0 through 9
– Punctuation symbols and

special characters
• Letters (A,B,C) are arranged

alphabetically
– The numeric value of A is less

than the numeric value of B

• Characters of each string
are compared one by one
until a difference is found

Chapter 4 – Slide 50

Mary is greater than Mark
because "y" has a Unicode
value greater than "k"

Copyright © 2011 Pearson Addison-Wesley

Testing for No Input

• The predefined constant String.Empty represents an
empty string, which is a string that contains no
characters

• Useful for determining whether the user has provided
input for a required field before performing operations
on that field

Chapter 4 – Slide 51

If txtInput.Text = String.Empty Then
 lblMessage.Text = "Please enter a value"
Else
 ' The txtInput control contains input, so
 ' perform an operation with it here.
End If

Copyright © 2011 Pearson Addison-Wesley

The ToUpper and ToLower Methods

• The ToUpper method can be applied
to a string

• Results in a string with lowercase
letters converted to uppercase

• The original string is not changed
• General Format:

• In the following example, strBigWord

is assigned the string "HELLO" using
the ToUpper method:

• The ToLower method can be applied
to a string

• Results in a string with uppercase
letters converted to lowercase

• The original string is not changed
• General Format:

• In the following example,
strLittleTown is assigned the string
"new york" using the ToLower
method:

Chapter 4 – Slide 52

strLittleWord = "Hello"
strBigWord = strLittleWord.ToUpper()

StringExpression.ToUpper() StringExpression.ToLower()

strBigTown = "NEW YORK"
strLittleTown = strBigTown.ToLower()

Copyright © 2011 Pearson Addison-Wesley

A Handy Use for ToUpper or ToLower

• ToUpper or ToLower can be used to perform case
insensitive comparisons of strings

• 1st comparison below is false "HELLO" <> "hello"
• 2nd comparison is true
• ToLower converts both strings to lower case
• Causes "hello" to be compared to "hello"

• Tutorial 4-5 demonstrates how this is used

Chapter 4 – Slide 53

strWord1 = "HELLO"
strWord2 = "hello"
If strWord1 = strWord2 ' False, not equal
If strWord1.ToLower() = strWord2.ToLower() ' True, equal

Copyright © 2011 Pearson Addison-Wesley

The IsNumeric Function

• This function accepts a string as an argument
and returns True if the string contains a
number

• Use IsNumeric function to determine if a
given string contains numeric data

Chapter 4 – Slide 54

Dim strNumber As String
strNumber = "576"
If IsNumeric(strNumber) ' Returns true
strNumber = "123abc"
If IsNumeric(strNumber) ' Returns false

Copyright © 2011 Pearson Addison-Wesley

Determining the Length of a String

• The Length property, a member of the String class, returns
the number of characters in a string

• In the following example, the intNumChars variable contains
the value 6:

• You can also determine the length of a control’s Text property,

as shown in the following code:

Chapter 4 – Slide 55

Dim strName As String = "Herman"
Dim intNumChars As Integer
intNumChars = strName.Length

If txtInput.Text.Length > 20 Then
lblMessage.Text = "Please enter no more than 20 characters."
End If

Copyright © 2011 Pearson Addison-Wesley

Trimming Spaces from Strings

• There are three methods that remove spaces from strings:
– TrimStart : removes leading spaces
– TrimEnd : removes trailing spaces
– Trim : removes leading and trailing spaces

• Here is the general format for each method:

• An example with three leading and trailing spaces, using each method:

Chapter 4 – Slide 56

StringExpression.TrimStart()
StringExpression.TrimEnd()
StringExpression.Trim()

strGreeting = " Hello "
lblMessage1.Text = strGreeting.TrimStart() ' lblMessage1.Text = "Hello "
lblMessage2.Text = strGreeting.TrimEnd() ' lblMessage2.Text = " Hello"
lblMessage3.Text = strGreeting.Trim() ' lblMessage3.Text = "Hello"

Copyright © 2011 Pearson Addison-Wesley

The Substring Method

• The Substring method returns a portion of a
string or a “string within a string” (a substring)

• Each character position is numbered sequentially
with the 1st character referred to as position zero

• StringExpression.Substring(Start)
– Returns the characters from the Start position to the

end of the string
• StringExpression.Substring(Start, Length)

– Returns the number of characters specified by Length
beginning with the Start position

Chapter 4 – Slide 57

Copyright © 2011 Pearson Addison-Wesley

Substring Method Examples

• The first example starts at the 8th (W) character in
the string and continues to the end of the string:

• The second example starts at the beginning (G) of

the string and continues until it reaches the 7th
(empty space) character of the string:

Chapter 4 – Slide 58

Dim strLastName As String
Dim strFullName As String = "George Washington"
strLastName = strFullName.Substring(7) ' Washington

Dim strFirstName As String
Dim strFullName As String = "George Washington"
strFirstName = strFullName.Substring(0, 6) ' George

Copyright © 2011 Pearson Addison-Wesley

The IndexOf Method

• The IndexOf method searches for a character or
string within a string, it has three general formats:

• StringExpression.IndexOf(Searchstring)
– Searches the entire string for SearchString

• StringExpression.IndexOf(SearchString, Start)
– Starts at the character position Start and searches

for SearchString from that point
• StringExpr.IndexOf(SearchString, Start, Count)

– Starts at the character position Start and searches
Count characters for SearchString

Chapter 4 – Slide 59

Copyright © 2011 Pearson Addison-Wesley

IndexOf Method Examples

• The IndexOf method will return the starting position of
the SearchString in the string being searched

• Positions are numbered from 0 (for the first)
• If SearchString is not found, a value of -1 is returned

• Tutorial 4-6 provides an opportunity to work with
several of the string methods

Chapter 4 – Slide 60

Dim name As String = "Angelina Adams"
Dim position As Integer
position = name.IndexOf("A", 1)
 ' position has the value 9

Position 0 Position 9

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.8

MORE ABOUT MESSAGE BOXES

Sometimes you need a convenient way to display a message to the
user. This section discusses the MessageBox.Show method, which
allows you to display a message in a dialog box.

Copyright © 2011 Pearson Addison-Wesley

Message Box Arguments

• A message box is a dialog box with a user message in a pop-up
window

• The following can be specified
– Message - text to display within the box
– Caption - title for the top bar of the box
– Buttons - indicates which buttons to display
– Icon - indicates icon to display
– DefaultButton - indicates which button corresponds to the

Return Key
• Message is required, the remaining arguments are optional
• Use of an argument requires those before it

Chapter 4 – Slide 62

MessageBox.Show(Message, Caption, Buttons, Icon, DefaultButton)

Copyright © 2011 Pearson Addison-Wesley

The Optional Buttons Argument

• Unless specified, the message box has only an OK button
• Buttons is a value that specifies which buttons to display in

the message box

Chapter 4 – Slide 63

Value Description
MessageBoxButtons.AbortRetryIgnore Displays Abort, Retry, and Ignore buttons

MessageBoxButtons.OK Displays only an OK button

MessageBoxButtons.OKCancel Displays OK and Cancel buttons

MessageBoxButtons.RetryCancel Displays Retry and Cancel buttons

MessageBoxButtons.YesNo Displays Yes and No buttons

MessageBoxButtons.YesNoCancel Displays Yes, No, and Cancel buttons

MessageBox.Show(Message, Caption, Buttons, Icon, DefaultButton)

Copyright © 2011 Pearson Addison-Wesley

The Optional Icon Argument

• Icon is a value that specifies an icon to display in the message box

• For example:

Chapter 4 – Slide 64

MessageBox.Show(Message, Caption, Buttons, Icon, DefaultButton)

Value Image

MessageBoxIcon.Asterisk
MessageBoxIcon.Information

MessageBoxIcon.Error
MessageBoxIcon.Hand
MessageBoxIcon.Stop

MessageBoxIcon.Exclamation
MessageBoxIcon.Warning

MessageBoxIcon.Question

MessageBox.Show("Do you wish
to continue?", "Please Confirm",
MessageBoxButtons.YesNo,
MessageBoxIcon.Question)

Copyright © 2011 Pearson Addison-Wesley

The Optional DefaultButton Argument

• The DefaultButton argument specifies which button to select
as the default button

• The default button is the button clicked when the user
presses the Enter key

Chapter 4 – Slide 65

Value Description

MessageBoxDefaultButton.Button1 Selects the leftmost button on the message
box as the default button

MessageBoxDefaultButton.Button2 Selects the second button from the left edge
of the message box as the default button

MessageBoxDefaultButton.Button3 Selects the third button from the left edge of
the message box as the default button

MessageBox.Show(Message, Caption, Buttons, Icon, DefaultButton)

Copyright © 2011 Pearson Addison-Wesley

MessageBox Example

• The following statement displays a message box and selects
Button2 (the No button) as the default button:

Chapter 4 – Slide 66

MessageBox.Show("Do you wish to continue?",
 "Please Confirm",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question,
 MessageBoxDefaultButton.Button2)

Copyright © 2011 Pearson Addison-Wesley

Determining Which Button the User Clicked

• The MessageBox.Show method returns an integer
that indicates which button the user clicked

Chapter 4 – Slide 67

Value Meaning
Windows.Forms.DialogResult.Abort The user clicked the Abort button

Windows.Forms.DialogResult.Cancel The user clicked the Cancel button

Windows.Forms.DialogResult.Ignore The user clicked the Ignore button

Windows.Forms.DialogResult.No The user clicked the No button

Windows.Forms.DialogResult.OK The user clicked the OK button

Windows.Forms.DialogResult.Retry The user clicked the Retry button

Windows.Forms.DialogResult.Yes The user clicked the Yes button

Copyright © 2011 Pearson Addison-Wesley

Determining Which Button the User Clicked
Example Code

• The following code shows how an If statement can take
actions based on which message box button the user clicked:

Chapter 4 – Slide 68

Dim intResult As Integer
intResult = MessageBox.Show("Do you wish to continue?",
 "Please Confirm",
 MessageBoxButtons.YesNo)
If intResult = Windows.Forms.DialogResult.Yes Then
 ' Perform an action here
ElseIf intResult = Windows.Forms.DialogResult.No Then
 ' Perform another action here
End If

Copyright © 2011 Pearson Addison-Wesley

Using ControlChars.CrLf to Display Multiple Lines

• If you want to display multiple lines of information in
a message box, use the constant ControlChars.CrLf
– CrLf stands for Carriage return Line feed
– Concatenate(&) it with the string you wish to

display, where you wish to begin a new line

Chapter 4 – Slide 69

MessageBox.Show("This is line 1"
 & ControlChars.CrLf &
 "This is line 2")

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.9

THE SELECT CASE STATEMENT

In a Select Case statement, one of several possible actions is
taken, depending on the value of an expression.

Copyright © 2011 Pearson Addison-Wesley

The Select Case Statement

• Similar to If…Then…ElseIf
– Performs a series of tests
– Conditionally executes the first true condition

• Select Case is different in that:
– A single test expression may be evaluated
– The test expression is listed once
– The possible values of the expression are then listed

with their conditional statements
• Case Else may be included and executed if none

of the values match the expression

Chapter 4 – Slide 71

Copyright © 2011 Pearson Addison-Wesley

Select Case General Format

Chapter 4 – Slide 72

Select Case TestExpression
 [Case ExpressionList
 [one or more statements]]
 [Case ExpressionList
 [one or more statements]]
 ' Case statements may be repeated
 ' as many times as necessary.
 [Case Else
 [one or more statements]]
End Select

Copyright © 2011 Pearson Addison-Wesley

Select Case Statement Example

Chapter 4 – Slide 73

Select Case CInt(txtInput.Text)
 Case 1
 MessageBox.Show("Day 1 is Monday.")
 Case 2
 MessageBox.Show("Day 2 is Tuesday.")
 Case 3
 MessageBox.Show("Day 3 is Wednesday.")
 Case 4
 MessageBox.Show("Day 4 is Thursday.")
 Case 5
 MessageBox.Show("Day 5 is Friday.")
 Case 6
 MessageBox.Show("Day 6 is Saturday.")
 Case 7
 MessageBox.Show("Day 7 is Sunday.")
 Case Else
 MessageBox.Show("That value is invalid.")
End Select

Copyright © 2011 Pearson Addison-Wesley

Select Case Flowchart Example

Chapter 4 – Slide 74

Test Expression

Operation 4 Operation 3 Operation 2 Operation 1

Value 1 Value 3 Default Value 2

Copyright © 2011 Pearson Addison-Wesley

Select Case Pseudocode Example

Chapter 4 – Slide 75

Select Case Input
 Case 1
 Display Message “Day 1 is Monday.”
 Case 2
 Display Message “Day 2 is Tuesday.”
 Case 3
 Display Message “Day 3 is Wednesday.”
 Case 4
 Display Message “Day 4 is Thursday.”
 Case 5
 Display Message “Day 5 is Friday.”
 Case 6
 Display Message “Day 6 is Saturday.”
 Case 7
 Display Message “Day 7 is Sunday.”
 Case Else
 Display Message “That value is invalid.”
End Select

Copyright © 2011 Pearson Addison-Wesley

More about the Expression List:
 Multiple Expressions

• The Case statement’s expression list can
contain multiple expressions, separated by
commas

Chapter 4 – Slide 76

Select Case intNumber
 Case 1, 3, 5, 7, 9
 strStatus = "Odd"
 Case 2, 4, 6, 8, 10
 strStatus = "Even"
 Case Else
 strStatus = "Out of Range"
End Select

Copyright © 2011 Pearson Addison-Wesley

More about the Expression List:
 String Values

• The Case statement can test string values

Chapter 4 – Slide 77

Select Case strAnimal
 Case "Dogs", "Cats"
 MessageBox.Show("House Pets")
 Case "Cows", "Pigs", "Goats"
 MessageBox.Show("Farm Animals")
 Case "Lions", "Tigers", "Bears"
 MessageBox.Show("Oh My!")
End Select

Copyright © 2011 Pearson Addison-Wesley

More about the Expression List:
Relational Operators

• You can use relational operators in the Case statement
• The Is keyword represents the test expression in the relational

comparison

Chapter 4 – Slide 78

Select Case dblTemperature
 Case Is <= 75
 blnTooCold = True
 Case Is >= 100
 blnTooHot = True
 Case Else
 blnJustRight = True
End Select

Copyright © 2011 Pearson Addison-Wesley

More about the Expression List:
Ranges of Values

• You can determine
whether the test
expression falls within a
range of values

• Requires the To keyword
– Smaller number on the left
– Larger number on the right
– Numbers on each side are

included in the range

Chapter 4 – Slide 79

Select Case intScore
 Case Is >= 90
 strGrade = "A"
 Case 80 To 89
 strGrade = "B"
 Case 70 To 79
 strGrade = "C"
 Case 60 To 69
 strGrade = "D"
 Case 0 To 59
 strGrade = "F"
 Case Else
 MessageBox.Show("Invalid Score")
End Select

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.10

INTRODUCTION TO INPUT
VALIDATION

Input validation is the process of inspecting input values and
determining whether they are valid.

Copyright © 2011 Pearson Addison-Wesley

Validation Example

• Output is only as good as the input
– “Garbage in, garbage out”

• Input validation is the process of inspecting
user input to see that it meets certain rules

• The TryParse method verifies that an input
value is in a valid numeric or date format

• Decision structures are often used to validate
input

Chapter 4 – Slide 81

Copyright © 2011 Pearson Addison-Wesley

The TryParse Method

• Converts an input value to another format
– Verifies that input of integers, decimals, dates, etc.,

are entered in an acceptable format
– Returns Boolean value indicating True if conversion

successful
– Returns False if unsuccessful

• Each numeric variable type has a TryParse
method

• Date & Boolean types include the TryParse
method as well

Chapter 4 – Slide 82

Copyright © 2011 Pearson Addison-Wesley

Verify Integer Entry With TryParse

• Use Integer.TryParse method to convert value
– txtInput.Text contains numeric string to convert
– intResult receives converted value
– TryParse returns True if input is an integer
– TryParse returns False if input is not an integer

Chapter 4 – Slide 83

Dim intResult As Integer
If Integer.TryParse(txtInput.Text, intResult) Then
 lblMessage.Text = "Success!"
Else
 lblMessage.Text = "Error: an integer was not found"
End If

Copyright © 2011 Pearson Addison-Wesley

Checking Numeric Ranges

• Sometimes you need to check numeric input
values to make sure they fall within a range

Chapter 4 – Slide 84

If intHours >= 0 And intHours <= 168 Then
 decGrosspay = intHours * decPayRate
Else
 MessageBox.Show("Invalid number of hours.")
End If

If intSpeed < 35 Or intSpeed > 60 Then
 MessageBox.Show("Speed violation!")
End If

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.11

FOCUS ON GUI DESIGN: RADIO BUTTONS
AND CHECK BOXES

Radio buttons appear in groups of two or more, allowing the
user to select one of several options. A check box allows the user
to select an item by checking a box, or deselect the item by
unchecking the box.

Copyright © 2011 Pearson Addison-Wesley

Radio Buttons

• Used when only one of several possible options
may be selected at one time
– Car radio buttons select one station at a time

• May be placed in a group box
– Group box defines a set of radio buttons
– Can select only one button within a group box
– Those on a form but not inside a group box are

considered members of the same group
• Radio buttons have a Boolean Checked property

and a CheckChanged event

Chapter 4 – Slide 86

Copyright © 2011 Pearson Addison-Wesley

Checking Radio Buttons in Code

Chapter 4 – Slide 87

If radCoffee.Checked = True Then
 MessageBox.Show("You selected Coffee")
ElseIf radTea.Checked = True Then
 MessageBox.Show("You selected Tea")
ElseIf radSoftDrink.Checked = True Then
 MessageBox.Show("You selected a Soft Drink")
End If

Copyright © 2011 Pearson Addison-Wesley

Check Boxes

• Unlike radio buttons, can select many check
boxes at one time

• May also be placed in a group box
– Not limited to one selection within a group box
– Can select as many check boxes as you like within the

same group box
• Check boxes also have a Boolean Checked

property and a CheckChanged event
• Tutorial 4-9 provides radio button and check box

examples

Chapter 4 – Slide 88

Copyright © 2011 Pearson Addison-Wesley

Checking Check Boxes in Code

Chapter 4 – Slide 89

' Determine which check boxes are checked.
If chkChoice4.Checked = True Then
 MessageBox.Show("You selected Choice 4.")
End If
If chkChoice5.Checked = True Then
 MessageBox.Show("You selected Choice 5.")
End If
If chkChoice6.Checked = True Then
 MessageBox.Show("You selected Choice 6.")

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 4.12

FOCUS ON PROGRAM DESIGN AND PROBLEM SOLVING:
BUILDING THE HEALTH CLUB MEMBERSHIP FEE

CALCULATOR APPLICATION

In this section you build the Health Club Membership Fee
Calculator application. It will use features discussed in this chapter,
including decision structures, radio buttons, and check boxes.

Copyright © 2011 Pearson Addison-Wesley

Health Club Fee Calculator Form

Chapter 4 – Slide 91

Copyright © 2011 Pearson Addison-Wesley

Calculate Button Click Event Flowchart

Chapter 4 – Slide 92

Copyright © 2011 Pearson Addison-Wesley

Base Monthly Fee Calculation
 Flowchart & Pseudocode

Chapter 4 – Slide 93

If Member is an Adult Then
 Monthly Base Fee = 40
ElseIf Member is a Child Then
 Montlhy Base Fee = 20
ElseIf Member is a Student Then
 Monthly Base Fee = 25
ElseIf Member is a Senior Citizen Then
 Monthly Base Fee = 30
End If

Copyright © 2011 Pearson Addison-Wesley

Calculate Optional Services
Flowchart & Pseudocode

Chapter 4 – Slide 94

If Yoga is selected Then
 Add 10 to the monthly base fee
End If
If Karate is selected Then
 Add 30 to the monthly base fee
End If
If Personal Trainer is selected Then
 Add 50 to the monthly base fee
End If

Copyright © 2011 Pearson Addison-Wesley

The Completed Membership Fee Calculator
Form

Chapter 4 – Slide 95

Copyright © 2011 Pearson Addison-Wesley

Test Data for the Membership Fee
Calculator

Chapter 4 – Slide 96

Type of Membership Monthly Fee Total

Standard adult with yoga, karate, and personal
trainer for 6 months

$130.00 $780.00

Child with karate for 3 months $50.00 $150.00

Student with yoga for 12 months $35.00 $420.00

Senior citizen with karate and personal trainer for
8 months

$110.00 $880.00

	Slide Number 1
	Chapter 4
	Introduction
	The Decision Structure
	Order of Statement Execution
	The Decision Structure
	The If...Then Statement
	General Format
	Relational Operators
	Boolean Expressions
	Putting It All Together
	Rules to Remember
	Programming Style
	Using Relational Operators with Math Operators
	Using Function Calls with Relational Operators
	Using Boolean Variables as Flags
	The If...Then...Else Statement
	General Format
	Flowchart and Pseudocode
	Two Mutually Exclusive Choices
	The If...Then...ElseIf Statement
	Multiple Possible Choices
	Multiple Possible Choices
	General Format
	Flowchart
	Example of ElseIf Usage
	Using Only If…Then Statements
	Using a Trailing Else
	Nested If Statements
	If Statements Within If Statements
	Nested If Example
	Examining the Nested If Statement
	Flowchart of Nested If Statements
	Logical Operators
	Visual Basic Logical Operators
	The And Operator
	Short-Circuit Evaluation with AndAlso
	Short-Circuit Evaluation with AndAlso
	The Or Operator
	Short Circuit-Evaluation with OrElse
	Short Circuit-Evaluation with OrElse
	The Xor Operator
	The Not Operator
	Checking Numerical Ranges
	Precedence of Logical Operators
	Precedence of Logical Operators
	Math, Relational, & Logical Operators
	Comparing, Testing, and Working with Strings
	Strings Can Be Compared
	How Are Strings Compared?
	Testing for No Input
	The ToUpper and ToLower Methods
	A Handy Use for ToUpper or ToLower
	The IsNumeric Function
	Determining the Length of a String
	Trimming Spaces from Strings
	The Substring Method
	Substring Method Examples
	The IndexOf Method
	IndexOf Method Examples
	More about Message Boxes
	Message Box Arguments
	The Optional Buttons Argument
	The Optional Icon Argument
	The Optional DefaultButton Argument
	MessageBox Example
	Determining Which Button the User Clicked
	Determining Which Button the User Clicked Example Code
	Using ControlChars.CrLf to Display Multiple Lines
	The Select Case Statement
	The Select Case Statement
	Select Case General Format
	Select Case Statement Example
	Select Case Flowchart Example
	Select Case Pseudocode Example
	More about the Expression List: � Multiple Expressions
	More about the Expression List: � String Values
	More about the Expression List:�Relational Operators
	More about the Expression List:�Ranges of Values
	Introduction to Input Validation
	Validation Example
	The TryParse Method
	Verify Integer Entry With TryParse
	Checking Numeric Ranges
	Focus on GUI Design: Radio Buttons�and Check Boxes
	Radio Buttons
	Checking Radio Buttons in Code
	Check Boxes
	Checking Check Boxes in Code
	Focus on Program Design and Problem Solving:�Building the Health Club Membership Fee�Calculator Application
	Health Club Fee Calculator Form
	Calculate Button Click Event Flowchart
	Base Monthly Fee Calculation� Flowchart & Pseudocode
	Calculate Optional Services �Flowchart & Pseudocode
	The Completed Membership Fee Calculator Form
	Test Data for the Membership Fee Calculator

