

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Chapter 3

Variables and Calculations

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.1

GATHERING TEXT INPUT

In this section, we use the TextBox control to gather input the user
has typed on the keyboard. We also alter a form’s tab order and assign
keyboard access keys to controls.

Copyright © 2011 Pearson Addison-Wesley

The TextBox Control

• A text box is a rectangular area on a form that
accepts input from a keyboard

• Tutorial 3-1 provides an example in the use of
a text box

Chapter 3- Slide 4

Copyright © 2011 Pearson Addison-Wesley

Using the Text Property in Code

• The TextBox control’s Text property can be
accessed in code the same way you access other
properties

• For Example:
– The contents of the Text property can be assigned into

a Label control’s Text property:
– lblInfo.Text = txtInput.Text
– The contents of the Text property can be displayed in

a message box
– MessageBox.Show(txtInput.Text)

Chapter 3- Slide 5

Copyright © 2011 Pearson Addison-Wesley

Clearing a Text Box

• Can be done with an assignment statement:
– txtInput.Text = String.Empty
– assigning the predefined constant String.Empty

replaces whatever text was in txtInput with an
empty string

• Can also be done with a method:
– txtInput.Clear()
– Clear is a Method, not a Property
– Methods are actions – as in clearing the text
– Uses the form Object.Method

Chapter 3- Slide 6

Copyright © 2011 Pearson Addison-Wesley

String Concatenation

• Assume the user has entered their name into
the TextBox txtName

• Label lblGreeting can say, “Hello” to any name
found in the TextBox
– lblGreeting.Text = "Hello " & txtName.Text
– Appends user name in txtName.Text to “Hello ”

and stores result in text property of lblGreeting

Chapter 3- Slide 7

Copyright © 2011 Pearson Addison-Wesley

String Concatenation

• Tutorial 3-2 provides another example of how
to concatenate strings from text boxes

Chapter 3- Slide 8

txtDayOfWeek
txtMonth
txtDayOfMonth
txtYear
lblDateString

btnExit
btnClear
btnShowDate

Copyright © 2011 Pearson Addison-Wesley

Aligning Controls in Design Mode

• When dragging a control to a form, it can be
aligned with a control already on the form
– Blue guide lines appear for vertical alignment
– Lavender guide lines for horizontal alignment

Chapter 3- Slide 9

Copyright © 2011 Pearson Addison-Wesley

The Focus Method

• For a control to have the focus means that it is
ready to receive the user's input

• In a running form, one and only one of the
controls on the form may have the focus

• Only a control capable of receiving some sort of
input may have the focus

• The focus can be set to a control in code using the
Focus method:

txtUserName.Focus()

Chapter 3- Slide 10

Copyright © 2011 Pearson Addison-Wesley

The Focus Method

• You can tell which control has focus by its
characteristics:
– When a TextBox has focus, it will have a blinking

cursor or its text will be highlighted
– When a button, radio button, or a check box has

focus, you’ll see a thin dotted line around the
control

• Tutorial 3-3 shows an example of the Focus
method

Chapter 3- Slide 11

Copyright © 2011 Pearson Addison-Wesley

Controlling a Form’s Tab Order
with the TabIndex Property

• Tab key steps focus from one control to the next
• This order is set by the TabIndex property
• The Tab key causes the focus to jump to the

control with the next highest TabIndex value
• The TabIndex property is best changed with the

Tab Order option from the View menu
– Displays the form in tab order selection mode
– Set a new tab order by clicking the controls in the

order you want
– This sets the numeric TabIndex value

Chapter 3- Slide 12

Copyright © 2011 Pearson Addison-Wesley

Assigning Keyboard Access Keys to Buttons

• Say your form had a button with the text “Exit"
on it

• You can allow the user to activate the button
using Alt-X instead of a mouse click

• Just change the button text property to “E&xit"
• The character following the '&' (x in this case) is

designated as an access key
• Be careful not to use the same access key for two

different buttons

Chapter 3- Slide 13

Copyright © 2011 Pearson Addison-Wesley

'&' Has Special Meaning in a Button

• Note that the '&' in “E&xit"
does not display in the button
control on the form

• It simply establishes the Alt
Key access

• In order to actually display an
'&' on a button, it must be
entered as "&&“
– Button text Save & Exit is

entered as Save && Exit

Chapter 3- Slide 14

Copyright © 2011 Pearson Addison-Wesley

Setting the Accept Button

• The accept button is a button that is implicitly
activated if the user hits the Enter Key

• The AcceptButton Property designates which
button on the form will behave in this manner

• The button clicked most frequently on a form
is usually assigned as the accept button

Chapter 3- Slide 15

Copyright © 2011 Pearson Addison-Wesley

Setting the Cancel Button

• The cancel button is a button that is implicitly
activated if the user hits the Escape Key

• The CancelButton Property designates which
button on the form will behave in this manner

• Any exit or cancel button on a form is a
candidate to become the cancel button

• Tutorial 3-5 provides examples of setting
access keys, accept, and cancel buttons

Chapter 3- Slide 16

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.2

VARIABLES AND DATA TYPES

Variables hold data that may be manipulated, used to manipulate
other data, or remembered for later use.

Copyright © 2011 Pearson Addison-Wesley

Why Have Variables?

• A variable is a storage location in the
computer’s memory, used for holding
information while the program is running

• The information that is stored in a variable
may change, hence the name “variable”

Chapter 3- Slide 18

Copyright © 2011 Pearson Addison-Wesley

What Can You Do With Variables?

• Copy and store values entered by the user, so
they may be manipulated

• Perform arithmetic on values
• Test values to determine that they meet some

criterion
• Temporarily hold and manipulate the value of

a control property
• Remember information for later use in the

program

Chapter 3- Slide 19

Copyright © 2011 Pearson Addison-Wesley

How to Think About Variables

• You the programmer make up a name for the
variable

• Visual Basic associates that name with a
location in the computer's RAM

• The value currently associated with the
variable is stored in that memory location

Chapter 3- Slide 20

Copyright © 2011 Pearson Addison-Wesley

Declaring Variables

• A variable declaration is a statement that creates a variable in
memory

• The syntax is:

Dim VariableName As DataType
– Dim (short for Dimension) is a keyword
– VariableName is the programmer designated name
– As is a keyword
– DataType is one of many possible keywords for the type of

value the variable will contain

• Here is an example of a variable declaration:

Dim intLength as Integer

Chapter 3- Slide 21

Copyright © 2011 Pearson Addison-Wesley

Declaring Multiple Variables

• Several variables may be declared in one
statement if they all hold the same type of value

Dim intLength, intWidth, intHeight as Integer

• Or this can be done in 3 separate statements

Dim intLength as Integer
Dim intWidth as Integer
Dim intHeight as Integer

Chapter 3- Slide 22

Copyright © 2011 Pearson Addison-Wesley

Variable Naming Rules

• The first character of a variable name must be
a letter or an underscore

• Subsequent characters may be a letter,
underscore, or digit
– Thus variable names cannot contain spaces or

periods (or many other kinds of characters)

• Visual Basic keywords cannot be used as
variable names

Chapter 3- Slide 23

Copyright © 2011 Pearson Addison-Wesley

Variable Naming Conventions

• Naming conventions are a guideline to help
improve readability but not required syntax

• A variable name should describe its use
• Each data type has a recommended prefix, in

lower case, that begins the variable name
• The 1st letter of each subsequent word in the

variable name should be capitalized
– intHoursWorked - an integer variable
– strLastName - a string (or text) variable

Chapter 3- Slide 24

Copyright © 2011 Pearson Addison-Wesley

Setting the Value of a Variable

• An assignment statement is used to set the value
of a variable, as in:
– Assign the value 112 to the variable length
– length = 112
– Assign the string literal “Good Morning “ followed by

the contents of the text box txtName to the variable
greeting

– greeting = "Good Morning " & txtName.Text
• An assignment changes only the left operand
• The right operand remains unchanged

Chapter 3- Slide 25

Copyright © 2011 Pearson Addison-Wesley

Visual Basic Data Types

• Integer types
– Byte
– Short
– Integer
– Long

• Floating-Point types
– Single
– Double
– Decimal

• Other data types
– Boolean
– Char
– String
– Date

Chapter 3- Slide 26

Copyright © 2011 Pearson Addison-Wesley

Integer Data Types

• For values that will always be a whole number
• Usually name a variable starting with a 3 or 4

letter prefix indicating the variable’s type

Chapter 3- Slide 27

Data
Type

Naming
Prefix Description

Byte byt Unsigned integer from 0 to 255

Short shrt Signed integer from -32,768 to 32,767

Integer int Signed integer from -2,147,483,648 to
2,147,483,647

Long lng Signed integer from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

Copyright © 2011 Pearson Addison-Wesley

Floating-Point Data Types

• For values that may have fractional parts
• Single used most frequently
• Double sometimes used in scientific calculations
• Decimal often used in financial calculations

Chapter 3- Slide 28

Data
Type

Naming
Prefix Description

Single sng As large as 1038 plus or minus, 7 decimal positions

Double dbl As large as 10308 plus or minus,15 decimal positions

Decimal dec As large as 1029 plus or minus, 29 decimal positions

Copyright © 2011 Pearson Addison-Wesley

Other Common Data Types

• Boolean – variable naming prefix is bln
– Holds 2 possible values, True or False

• Char – variable naming prefix is chr
– Holds a single character
– Allows for characters from other languages

• String – variable naming prefix is str
– Holds a sequence of up to 2 billion characters

• Date – variable naming prefix is dat or dtm
– Can hold date and/or time information

Chapter 3- Slide 29

Copyright © 2011 Pearson Addison-Wesley

The String Data Type

• A string literal is enclosed in quotation marks
– The following code assigns the name Jose

Gonzales to the variable strName
 Dim strName as string
 strName = "Jose Gonzales"
• An empty string literal can be coded as:

– Two consecutive quotation marks
 strName = ""

– Or by the special identifier String.Empty
 strName = String.Empty

Chapter 3- Slide 30

Copyright © 2011 Pearson Addison-Wesley

The Date Data Type

• Date data type variables can hold the date and time or
both
– You can assign a date literal to a Date variable, as

shown here:
 Dim dtmBirth As Date
 dtmBirth = #5/1/2010#
• A date literal is enclosed within # symbols

– All of the following Date literals are valid:
 #12/10/2010#

 #8:45:00 PM#
 #10/20/2010 6:30:00 AM#

Chapter 3- Slide 31

Copyright © 2011 Pearson Addison-Wesley

Assigning Text to a Variable

• Tutorial 3-6 provides an example of how the contents
of text boxes are assigned to a string variable

 ' Declare a string variable to hold the full name.
 Dim strFullName As String

 ' Combine the first and last names
 ' and copy the result to lblFullName
 strFullName = txtFirstName.Text & " " & txtLastName.Text
 lblFullName.Text = strFullName

Chapter 3- Slide 32

Copyright © 2011 Pearson Addison-Wesley

Declaring Variables with IntelliSense

• As you enter your program, VB often aids you by
offering a list of choices that could be used at
that point

• After typing "As" in a variable declaration, VB will
offer an alphabetical list of all possible data types
– Type the first few letters of the data type name
– IntelliSense box will highlight the matching type
– Press the Tab key to select highlighted choice

• Or just complete typing the entire data type
name

Chapter 3- Slide 33

Copyright © 2011 Pearson Addison-Wesley

Default Values and Initialization

• When a variable is first created in memory, it
is assigned a default value
– numeric types are given a value of zero
– Boolean types are given a value of False
– strings are given a value of Nothing
– dates default to 12:00:00 AM January 1,1

• Good practice to initialize string variables
– Dim strName as String = String.Empty
– String with value Nothing causes error if used

Chapter 3- Slide 34

Copyright © 2011 Pearson Addison-Wesley

Initialization of Variables

• Can provide a starting or initialization value
for any type of variable in a Dim statement

• Usually want to set an initial value unless
assigning a value prior to using the variable

• Just append = value to the Dim statement
where value is the literal to be assigned to the
variable

 Dim intMonthsPerYear As Integer = 12

Chapter 3- Slide 35

Copyright © 2011 Pearson Addison-Wesley

Scope and Local Variables

• Scope refers to the part of the program where:
– A variable is visible and
– May be accessed by program code

• Variables declared within a procedure are called
local variables and observe these characteristics
– Scope begins where variable is declared
– Extends to end of procedure where declared
– Variable is not visible outside the procedure

• A variable cannot be declared twice in the same
procedure

Chapter 3- Slide 36

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.3

PERFORMING CALCULATIONS

Visual Basic has powerful arithmetic operators that perform calculations
with numeric variables and literals.

Copyright © 2011 Pearson Addison-Wesley

Common Arithmetic Operators

• Visual Basic provides operators for the
common arithmetic operations:

 + Addition
 - Subtraction
 * Multiplication
 / Division
 ^ Exponentiation

Chapter 3- Slide 38

Copyright © 2011 Pearson Addison-Wesley

Common Arithmetic Operators

• Addition
 dblTotal = dblPrice + dblTax
• Subtraction
 dblNetPrice = dblPrice – dblDiscount
• Multiplication
 intArea = intLength * intWidth
• Division
 dblAverage = intTotal / intItems
• Exponentiation
 dblCube = dblSide ^ 3

Chapter 3- Slide 39

Copyright © 2011 Pearson Addison-Wesley

Special Integer Division Operator

• The backslash (\) is used as an integer division
operator

• Divides one integer by another
• The result is always an integer, created by discarding

any remainder from the division
• If calculating the number of hours in a given number

of minutes
 intHours = intMinutes \ 60

– With intMinutes equal to 190, this calculation will
result in the value 3 assigned to intHours

Chapter 3- Slide 40

Copyright © 2011 Pearson Addison-Wesley

Modulus (MOD) Operator

• This operator can be used in place of the backslash
operator to give the remainder of a division operation

 intRemainder = 17 MOD 3 ' result is 2
 dblRemainder = 17.5 MOD 3 ' result is 2.5
• Use of the \ or MOD

operator to perform integer
division by zero causes a
DivideByZeroException
runtime error

Chapter 3- Slide 41

Copyright © 2011 Pearson Addison-Wesley

Retrieving the Current Date/Time

• A series of keywords yields the current date,
current time, or both

• Variables datCurrent, datCurrTime, and

datCurrDate must be declared as Date data types

Chapter 3- Slide 42

Description Keyword Example
Date & Time Now dtmCurrent=Now

Time only TimeOfDay dtmCurrTime=TimeOfDay

Date only Today dtmCurrDate=Today

Copyright © 2011 Pearson Addison-Wesley

Combined Assignment Operators

• Often need to change the value in a variable and
assign the result back to that variable
– For example: intValue = intValue – 5
– Subtracts 5 from the value stored in intValue

• Other examples:
– x = x + 4 Adds 4 to x
– x = x – 3 Subtracts 3 from x
– x = x * 10 Multiplies x by 10

• VB provides for this common need with
combined assignment operators

Chapter 3- Slide 43

Copyright © 2011 Pearson Addison-Wesley

Combined Assignment Operators

These special assignment operators provide an easy
means to perform these common operations:

Operator Usage Equivalent to Effect
 += x += 2 x = x + 2 Add to
 -= x -= 5 x = x – 5 Subtract from
 *= x *= 10 x = x * 10 Multiply by
 /= x /= y x = x / y Divide by
 \= x \= y x = x \ y Int Divide by
 &= name &= last name = name & last Concatenate

Chapter 3- Slide 44

Copyright © 2011 Pearson Addison-Wesley

Arithmetic Operator Precedence

• Operator precedence tells us the order in which
operations are performed

• From highest to lowest precedence:
– Exponentiation (^)
– Multiplicative (* and /)
– Integer Division (\)
– Modulus (MOD)
– Additive (+ and -)

• Where precedence is the same, operations occur
from left to right

Chapter 3- Slide 45

Copyright © 2011 Pearson Addison-Wesley

Operator Precedence Examples

The result is very different when the divide by 2 operation is
moved from the end of the calculation to the middle.

Chapter 3- Slide 46

6 * + 4 / 2

 + 4 / 2

 48 +

 6 / 2 * + 4

 * 8 + 4

 + 4

Copyright © 2011 Pearson Addison-Wesley

Grouping with Parentheses

• Parentheses () can be used to force selected parts
of an expression to be evaluated before others
– Assume we’re computing the average of 3 numbers
– dblAvg = int1 + int2 + int3 / 3 ' incorrect
– int3 / 3 is evaluated first
– That result is added to int1 and int2

• Use parentheses to control order of operations
– dblAvg = (int1 + int2 + int3) / 3 ' correct
– int1 + int2 + int3 is evaulated first
– That result is divided by 3

• When in doubt, use parentheses!

Chapter 3- Slide 47

Copyright © 2011 Pearson Addison-Wesley

Converting Mathematical
Expressions to Programming Statements

• In algebra, the mathematical expression 2xy describes the
value 2 times x times y.

• Visual Basic requires an operator for any mathematical
operation.

Chapter 3- Slide 48

Mathematical Expression Operation Visual Basic Equivalent

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.4

MIXING DIFFERENT DATA TYPES

When you assign a value of one data type to a variable of another data
type, Visual Basic attempts to convert the value being assigned to the
data type of the receiving variable.

Copyright © 2011 Pearson Addison-Wesley

Implicit Type Conversions

• A value of one data type can be assigned to a variable of
a different type
– An implicit type conversion is an attempt to convert to

the receiving variable’s data type
• A widening conversion suffers no loss of data

– Converting an integer to a double
– Dim dblVal As Double = 5

• A narrowing conversion may lose data
– Converting a decimal to an integer
– Dim intNum As Integer = 12.2 ' intNum becomes 12

Chapter 3- Slide 50

Copyright © 2011 Pearson Addison-Wesley

Option Strict

• Option Strict is a VB configuration setting
• Only widening conversions are allowed when

Option Strict is set to On
– An integer can be assigned to a decimal
– A decimal cannot be assigned to an integer
– A single can be assigned to a double
– A double cannot be assigned to a single

• Option Strict On is recommended to help
catch errors

Chapter 3- Slide 51

Copyright © 2011 Pearson Addison-Wesley

Type Conversion Runtime Errors

• Consider the statement
 Dim intCount As Integer = "abc123"

• This is a narrowing conversion
• With Option Strict On, statement will not

compile
• With Option Strict Off, statement compiles but

– String "abc123" will not convert to an integer
– A runtime error called a type mismatch occurs

when this statement is executed

Chapter 3- Slide 52

Copyright © 2011 Pearson Addison-Wesley

Literals

Chapter 3- Slide 53

Type Description Example
Boolean Keywords True and False True

Byte Decimal digits between 0 and 255 200

Char Character surrounded by double quotes followed by
lowercase C "A"c

Date Date and/or time representation enclosed in # #4/17/10 #

Decimal Digits with decimal point followed by D or @ +32.0D

Double Digits with decimal point followed by optional R 3.5R

Integer Decimal digits followed by optional letter I -3054I

Long Decimal digits followed by the letter L 40000L

Short Decimal digits followed by the letter S 12345S

Single Digits with decimal point followed by letter F or ! 26.4F

String Characters surrounded by double quotes "ABC123"

Copyright © 2011 Pearson Addison-Wesley

Named Constants

• Programs often need to use given values
– For example: dblTotal *= 1.06
– Adds 6% sales tax to an order total

• Two problems with this approach
– The reason for multiplying dblTotal by 1.06 isn’t

always obvious
– If sales tax rate changes, must find and change every

occurrence of .06 or 1.06
• Use of named constants resolves both these

issues

Chapter 3- Slide 54

Copyright © 2011 Pearson Addison-Wesley

Named Constants

• Can declare a variable whose value is set at declaration
and cannot be changed later:

 Const dblSALES_TAX_RATE As Double = 1.06
• Looks like a normal declaration except:

– Const used instead of Dim
– An initialization value is required
– By convention, entire name capitalized with underscore

characters to separate words
• The objective of our code is now clearer
 Const dblSALES_TAX_RATE As Double = 1.06
 dblTotal *= dblSALES_TAX_RATE

Chapter 3- Slide 55

Copyright © 2011 Pearson Addison-Wesley

Explicit Type Conversions

• A function performs some predetermined
operation and provides a single output

• VB provides a set of functions that permit
narrowing conversions with Option Strict On

• These functions will accept a constant,
variable name, or arithmetic expression

• The function returns the converted value

Chapter 3- Slide 56

Copyright © 2011 Pearson Addison-Wesley

Explicit Type Conversions

• The following narrowing conversions require
an explicit type conversion
– Double to Single
– Single to Integer
– Long to Integer

• Boolean, Date, Object, String, and numeric
types represent different sorts of values and
require conversion functions as well

Chapter 3- Slide 57

Copyright © 2011 Pearson Addison-Wesley

Explicit Type Conversion Examples

• Rounding can be done with the CInt function
 intCount = CInt(12.4) ' intCount value is 12
 intCount = CInt(12.5) ' intCount value is 13
• CStr converts an integer value to a string
 Dim strText As String = CStr(26)
• CDec converts a string to a double
 Dim dblPay As Double = CDbl("$1,500")
• CDate converts a string to a date
 Dim datHired As Date = CDate(“2/14/2012")

Chapter 3- Slide 58

Copyright © 2011 Pearson Addison-Wesley

Commonly Used Conversion Functions

 Here are some commonly used conversion
functions:

Chapter 3- Slide 59

Function Description
Cint (expression) Converts expression to an integer
Cdbl (expression) Converts expression to a double
Cdate (expression) Converts expression to a date
Cdec (expression) Converts expression to a decimal
Cstr (expression) Converts expression to a string

Copyright © 2011 Pearson Addison-Wesley

A Full List of Conversion Functions

• There are conversion functions for each data type:

 CBool (expression) CInt (expression)
 CByte (expression) CLng (expression)
 CChar (expression) CObj (expression)
 CDate (expression) CShort (expression)
 CDbl (expression) CSng (expression)
 CDec (expression) CStr (expression)

Chapter 3- Slide 60

Copyright © 2011 Pearson Addison-Wesley

Invalid Conversions

• Conversion functions can fail
 Dim dblSalary As Double = CDbl("xyz")
 Dim datHired As Date = CDate("5/35/2011")
• String "xyz" can’t be converted to a number
• There’s no day 35 in the month of May

• Failed conversions

cause a runtime error called
an invalid cast exception

Chapter 3- Slide 61

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.5

FORMATTING NUMBERS AND
DATES

Users of computer programs generally like to see numbers and dates
displayed in an attractive, easy to read format. Numbers greater than
999, for instance, should usually be displayed with commas and decimal
points. The value 123456.78 would normally be displayed as
“123,456.78”.

Copyright © 2011 Pearson Addison-Wesley

The ToString Method

• Converts the contents of a variable as a string
• Every VB data type has a ToString method
• Uses the form VariableName.ToString

– Value in VariableName is converted to a string
• For example:

 Dim number As Integer = 123
 lblNumber.text = number.ToString
– Converts integer 123 to string "123"
– Then assigns the string to the text property of the

lblNumber control

Chapter 3- Slide 63

Copyright © 2011 Pearson Addison-Wesley

ToString Method with Format String

• Can pass a format string to the ToString method
• Indicates how you want to format the string
• For example

 Dim dblSample As Double
 Dim strResult As String
 dblSample = 1234.5
 strResult = dblSample.ToString("c")

• The value "c" is a format string
• Converts 1234.5 to currency format $1,234.50

Chapter 3- Slide 64

Copyright © 2011 Pearson Addison-Wesley

Types of Format Strings

Chapter 3- Slide 65

Format String Description
N or n Number format includes commas and displays 2 digits to the right

of the decimal

F or f Fixed point format 2 digits to the right of the decimal but no
commas

E or e Exponential format displays values in scientific notation with a
single digit to the left of the decimal point. The exponent is
marked by the letter e, and the exponent has a leading + or - sign.

C or c Currency format includes dollar sign, commas, and 2 digits to the
right of the decimal

P or p Percent format multiplies number by 100 and displays with a
trailing space and percent sign

Copyright © 2011 Pearson Addison-Wesley

Specifying Decimal Precision

• Can add an integer to the format string to indicate number of digits to
display after the decimal point

• Rounding occurs when displaying fewer decimal positions than the
number contains as in the 2nd line

Chapter 3- Slide 66

Number Value Format String ToString() Value
12.3 n3 12.300

12.348 n2 12.35

1234567.1 n 1,234,567.10

123456.0 f2 123456.00

123456.0 e3 1.235e+005

.234 p 23.40%

–1234567.8 c ($1,234,567.80)

Copyright © 2011 Pearson Addison-Wesley

Specifying Integer Leading Zeros

• Can specify a minimum width when displaying
an integer value

• Leading zeros are inserted to meet the
minimum width if needed

Chapter 3- Slide 67

Number Value Format String ToString() Value
23 D 23

23 D4 0023

1 D2 01

Copyright © 2011 Pearson Addison-Wesley

Formatting Dates and Times

• The ToString method can format a Date or DateTime value in a
variety of ways

• If the date is 8/10/2010 and the time is 3:22 PM

• Tutorial 3-8 provides an opportunity to work with number
formatting concepts

Chapter 3- Slide 68

Format String Description ToString() Value
d Short Date "8/10/2010"

D Long Date "Tuesday, August 10, 2010"

t Short Time "3:22 PM"

T Long Time "3:22:00 PM"

F Long Date & Time "Tuesday August 10, 2010 3:22:00 PM"

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.6

CLASS-LEVEL VARIABLES

Class-level variables are accessible to all procedures in a class.

Copyright © 2011 Pearson Addison-Wesley

Class-Level Variables

• A variable declared inside a class but outside any
procedure is a class-level variable
– Scope is throughout all procedures of the class

• Take care when using class-level variables:
– Tracking down logic errors can be time consuming

because many statements can access the variable
– Make sure not to upset the accuracy of variables that

are used in multiple procedures
– Because all statement can access the variables, you

must be aware of every statement that has access

Chapter 3- Slide 70

Copyright © 2011 Pearson Addison-Wesley

Class-Level Constants

• A class-level constant is a named constant
declared with the Const keyword, at the class
level

• Class-level constants cannot be changed
during runtime
– eliminates many of the potential hazards that are

associated with the use of class-level variables
– generally more acceptable to use than class-level

variables

Chapter 3- Slide 71

Copyright © 2011 Pearson Addison-Wesley

Class-Level Declarations

Public Class Form1
 ' Begin after class declaration.
 ' Declare a class-level constant.
 Dim Const intVALUE As Integer = 0
 ' Declare a class-level variable.
 Dim intValue As Integer
 ' End before procedure declarations.
 Private Sub Procedure()
 End Sub
End Class

Chapter 3- Slide 72

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.7

EXCEPTION HANDLING

A well-engineered program should report errors and try to
continue. Or, it should explain why it cannot continue, and then
shut down. In this section, you learn how to recover gracefully
from errors, using a technique known as exception handling.

Copyright © 2011 Pearson Addison-Wesley

Runtime Errors

• We’ve shown two possible runtime errors
– DivideByZeroException
– InvalidCastException
– There are many others

• Runtime errors occur for may reasons
• A runtime error results when:

– Visual Basic throws an exception
– And it is an unhandled exception

• Exception handling allows a program to fail
gracefully and recover if possible

Chapter 3- Slide 74

Copyright © 2011 Pearson Addison-Wesley

Handling Exceptions

• Visual Basic provides an exception handler
• The Try-Catch statement:
 Try
 ' Try block statements…
 Catch
 ' Catch block statements…
 End Try
• The try block contains program statements that might

throw an exception
• The catch block contains statements to execute if an

exception is thrown

Chapter 3- Slide 75

Copyright © 2011 Pearson Addison-Wesley

Exception Handling Example

• If CDec throws a cast exception, the try block catches it, jumps to
and executes the catch block which displays the error message

Chapter 3- Slide 76

Try
 ' Get the user's input and convert it to a Decimal.
 decSalary = CDec(txtSalary.Text)
 ' Display the user's salary.
 MessageBox.Show("Your salary is " & decSalary.ToString("c"))
Catch
 ' Display an error message.
 MessageBox.Show("Please try again, and enter a number.")
End Try

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.8

GROUP BOXES

The GroupBox control is a container that is used to group other
controls together.

Copyright © 2011 Pearson Addison-Wesley

The GroupBox Control

• A GroupBox creates a grouping of controls
– Controls are enclosed in

a box with a title
– It’s apparent the controls

within the GroupBox are related in some way
– Controls in a GroupBox have their own tab order
– Moving a GroupBox moves its controls with it
– Removing a GroupBox also removes all controls

within it

Chapter 3- Slide 78

Copyright © 2011 Pearson Addison-Wesley

Placing Controls Within a Group Box

• Must create the GroupBox first
• Then select the GroupBox control and

– Double-click the tool from the ToolBox to place the
control in the group

 or
– Click and drag the control from the ToolBox to the

GroupBox
• To move an existing control to a GroupBox

– Select the control and cut it from the form
– Select the group and paste the control into it

Chapter 3- Slide 79

Copyright © 2011 Pearson Addison-Wesley

GroupBox Tab Order

• A GroupBox has it’s own place in form tab order
• Once the tab order reaches the GroupBox

– Must tab through all controls in the GroupBox
before tabbing to controls outside GroupBox

– Tab order of controls inside the GroupBox
can be assigned in any order

• The GroupBox to the right
is 2nd in the form tab order

• Tab order of controls in the
GroupBox is 2.1, 2.3, & 2.5

Chapter 3- Slide 80

Copyright © 2011 Pearson Addison-Wesley

Selecting Multiple Controls

• Multiple controls can be selected and then
acted upon as a group
– Click and drag over the desired controls
– Any control partially or completely within the

selection box will be selected
– Or hold the Ctrl key while clicking the controls

• Once selected, a group of controls may
– Be moved together as a group
– Be deleted in a single step
– Have their properties set in a single step

Chapter 3- Slide 81

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.9

THE LOAD EVENT

When an application’s form loads into memory, an event known as the
Load event takes place. You can write an event handler for the Load
event, and that handler will execute just before the form is displayed.

Copyright © 2011 Pearson Addison-Wesley

Load Event Handler

• Every form has a Load event
– Executes when the form is first displayed

• Double-click in any empty space on the form
– The code window will appear
– Place the code to be executed between the

Private Sub and End Sub lines of the event handler

Chapter 3- Slide 83

Private Sub Form1_Load(...) Handles MyBase.Load
MessageBox.Show("Prepare to see the form!")
End Sub

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.10

FOCUS ON PROGRAM DESIGN AND PROBLEM SOLVING:
BUILDING THE ROOM CHARGE CALCULATOR APPLICATION

The Room Charge Calculator Application applies the various concepts
discussed in this chapter.

Copyright © 2011 Pearson Addison-Wesley

The Room Charge Calculator

Chapter 3- Slide 85

Copyright © 2011 Pearson Addison-Wesley

The btnCalculate Click Event

Chapter 3- Slide 86

Copyright © 2011 Pearson Addison-Wesley

The btnClear Click Event

Chapter 3- Slide 87

Copyright © 2011 Pearson Addison-Wesley

The btnExit Click Event & The Form1 Load Event

Chapter 3- Slide 88

Copyright © 2011 Pearson Addison-Wesley

The Completed Form

Chapter 3- Slide 89

Copyright © 2011 Pearson Addison-Wesley

Changing Colors with Code (Optional Topic)

• You can change color properties with code
– The following code sets the label’s background color to

black and foreground color to yellow:

– And the following code returns the background and

foreground to the default colors:

Chapter 3- Slide 90

lblMessage.BackColor = Color.Black
lblMessage.ForeColor = Color.Yellow

lblMessage.BackColor = SystemColors.Control
lblMessage.ForeColor = SystemColors.ControlText

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 3.11

MORE ABOUT DEBUGGING:
LOCATING LOGIC ERRORS

Visual Studio allows you to pause a program, and then execute
statements one at a time. After each statement executes, you may
examine variable contents and property values.

Copyright © 2011 Pearson Addison-Wesley

Debugging Problem

• The program runs but does not work correctly
(has one or more logic errors)

• Running the program with various inputs has
not isolated where those logic errors lie

• What can be done?

Chapter 3- Slide 92

Copyright © 2011 Pearson Addison-Wesley

Visual Basic Debugging Aids

• You can set breakpoints
– A line or lines you select in your source code
– When execution reaches this line, it pauses
– You may then examine the values in variables and

certain control properties
– You may also single-step through the program which

executes one statement at a time
• This allows you to see and examine:

– What is happening one statement at a time
– Where it is happening
– What the various data values are (Watches)

Chapter 3- Slide 93

Copyright © 2011 Pearson Addison-Wesley

Visual Basic Debugging Aids

• Tutorial 3-13 demonstrates how to:
– Set breakpoints
– Examine the values of variables and control

properties
– Use the Autos, Immediate, Locals, and Watch

windows

Chapter 3- Slide 94

Copyright © 2011 Pearson Addison-Wesley

Debugging Commands in the Toolbar

• Visual Studio provides a toolbar for debugging
commands

Chapter 3- Slide 95

	Slide Number 1
	Chapter 3
	Gathering Text Input
	The TextBox Control
	Using the Text Property in Code
	Clearing a Text Box
	String Concatenation
	String Concatenation
	Aligning Controls in Design Mode
	The Focus Method
	The Focus Method
	Controlling a Form’s Tab Order�with the TabIndex Property
	Assigning Keyboard Access Keys to Buttons
	'&' Has Special Meaning in a Button
	Setting the Accept Button
	Setting the Cancel Button
	Variables and Data Types
	Why Have Variables?
	What Can You Do With Variables?
	How to Think About Variables
	Declaring Variables
	Declaring Multiple Variables
	Variable Naming Rules
	Variable Naming Conventions
	Setting the Value of a Variable
	Visual Basic Data Types
	Integer Data Types
	Floating-Point Data Types
	Other Common Data Types
	The String Data Type
	The Date Data Type
	Assigning Text to a Variable
	Declaring Variables with IntelliSense
	Default Values and Initialization
	Initialization of Variables
	Scope and Local Variables
	Performing Calculations
	Common Arithmetic Operators
	Common Arithmetic Operators
	Special Integer Division Operator
	Modulus (MOD) Operator
	Retrieving the Current Date/Time
	Combined Assignment Operators
	Combined Assignment Operators
	Arithmetic Operator Precedence
	Operator Precedence Examples
	Grouping with Parentheses
	Converting Mathematical�Expressions to Programming Statements
	Mixing Different Data Types
	Implicit Type Conversions
	Option Strict
	Type Conversion Runtime Errors
	Literals
	Named Constants
	Named Constants
	Explicit Type Conversions
	Explicit Type Conversions
	Explicit Type Conversion Examples
	Commonly Used Conversion Functions
	A Full List of Conversion Functions
	Invalid Conversions
	Formatting Numbers and Dates
	The ToString Method
	ToString Method with Format String
	Types of Format Strings
	Specifying Decimal Precision
	Specifying Integer Leading Zeros
	Formatting Dates and Times
	Class-Level Variables
	Class-Level Variables
	Class-Level Constants
	Class-Level Declarations
	Exception Handling
	Runtime Errors
	Handling Exceptions
	Exception Handling Example
	Group Boxes
	The GroupBox Control
	Placing Controls Within a Group Box
	GroupBox Tab Order
	Selecting Multiple Controls
	The Load Event
	Load Event Handler
	Focus on Program Design and Problem Solving:�Building the Room Charge Calculator Application
	The Room Charge Calculator
	The btnCalculate Click Event
	The btnClear Click Event
	The btnExit Click Event & The Form1 Load Event
	The Completed Form
	Changing Colors with Code (Optional Topic)
	More about Debugging: Locating Logic Errors
	Debugging Problem
	Visual Basic Debugging Aids
	Visual Basic Debugging Aids
	Debugging Commands in the Toolbar

