

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Chapter 5

Lists and Loops

Copyright © 2011 Pearson Addison-Wesley

Introduction

• This chapter introduces:
–Input boxes
–List and combo boxes
–Loops
–Random numbers
–The ToolTip control

Chapter 5 – Slide 3

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.1

INPUT BOXES

Input boxes provide a simple way to gather input without placing a
text box on a form.

Copyright © 2011 Pearson Addison-Wesley

Overview

• An input box provides a quick and simple way to ask the
user to enter data

– User types a value in the text box
– OK button returns a string value containing user input
– Cancel button returns an empty string
– Should not be used as a primary method of input
– Convenient tool for developing & testing applications

Chapter 5 – Slide 5

Copyright © 2011 Pearson Addison-Wesley

General Format

Chapter 5 – Slide 6

InputBox(Prompt [,Title] [,Default] [,Xpos] [,Ypos])

Argument Description
Prompt String displayed in the input box, normally asks the user for a value

[Optional arguments]
Title String that appears in the title bar, contains project name by default

Default String to be initially displayed in the text box, empty by default

Xpos Integer that specifies the distance (in pixels) of the leftmost edge of
the input box from the left edge of the screen, centered horizontally
by default

Ypos Integer that specifies the distance (in pixels) of the topmost edge of
the input box from the top of the screen, placed near the top of the
screen by default

Copyright © 2011 Pearson Addison-Wesley

Example Usage

• To retrieve the value returned by the InputBox function, use the
assignment operator to assign it to a variable

• For example, the following statement assigns the string value returned by
the InputBox function to the string variable strUserInput

• The string value that appears inside the text box will be stored in the

strUserInput variable after the OK button is clicked and the input box
closes

Chapter 5 – Slide 7

Dim strUserInput As String = InputBox("Enter the distance.",
 "Provide a Value",
 "150")

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.2

LIST BOXES

List boxes display a list of items and allow the user to select an
item from the list.

Copyright © 2011 Pearson Addison-Wesley

Overview

• In Design mode, the list box
appears as a rectangle
– The size of the rectangle

determines the size of the list
box

• Use the lst prefix when
naming a list box (lstListBox)

Chapter 5 – Slide 9

• A ListBox control displays a list
of items and also allows the
user to select one or more
items from the list
– Displays a scroll bar when all

items cannot be shown

• To create a ListBox control:
– Double-click the ListBox icon

in the Toolbox window
– Position and resize the

control as necessary

Copyright © 2011 Pearson Addison-Wesley

The Items Property

• The entries in a list box are stored in a
property named Items
– The Items property holds an entire list of values

from which the user may choose
– The list of values may be established at design

time or runtime
– Items are stored in a Collection called the Items

Collection

Chapter 5 – Slide 10

Copyright © 2011 Pearson Addison-Wesley

Adding Items to the Items Collection

• To store values in the
Items property at design
time:
– Select the ListBox control

in the Designer window
– In the Properties window,

click the Items (Collection)
ellipsis button (...)

– Type each value on a
separate line in the String
Collection Editor dialog
box

Chapter 5 – Slide 11

Copyright © 2011 Pearson Addison-Wesley

The Items.Count Property

• The Items.Count property returns the number
of list box items or zero if the list is empty

• For example, the Items.Count return value:
– Can be used in an If statement:

– Or assigned to a variable

Chapter 5 – Slide 12

If lstEmployees.Items.Count = 0 Then
 MessageBox.Show("The list has no items!")
End If

IntNumEmployees = lstEmployees.Items.Count

Copyright © 2011 Pearson Addison-Wesley

Item Indexing

• The Items property values can be accessed from your VB code
• Each item value is given a sequential index

– The first item has an index of 0
– The second item has an index of 1, etc.

• When assigning an item to a variable, you must explicitly
convert the item to the same data type as the variable
– Examples:

Chapter 5 – Slide 13

strName = lstCustomers.Items(2).ToString()

intRoomNumber = CInt(lstRoomNumbers.Items(0))

Copyright © 2011 Pearson Addison-Wesley

Handling Exceptions Caused by Indexes

• An exception is thrown if an index is out of range
– An exception handler can be used to trap indexing errors

– Some programmers prefer to use an If statement to handle
indexing errors

Chapter 5 – Slide 14

Try
 strInput = lstMonths.Items(intIndex).ToString()
Catch ex As Exception
 MessageBox.Show(ex.Message)
End Try

If intIndex >= 0 And intIndex < lstMonths.Items.Count Then
 strInput = lstMonths.Items(intIndex).ToString()
Else
 MessageBox.Show("Index is out of range: " & intIndex)
End If

Copyright © 2011 Pearson Addison-Wesley

The SelectedIndex Property

• The SelectedIndex property returns an integer with
the index of the item selected by the user

• If no item is selected, the value is set to -1 (an invalid
index value)

• Can use SelectedIndex to determine if an item has
been selected by comparing to -1

• Example:

Chapter 5 – Slide 15

If lstLocations.SelectedIndex <> -1 Then
 strLocation = lstLocations.Items(lstLocations.SelectedIndex).ToString()
End If

Copyright © 2011 Pearson Addison-Wesley

The SelectedItem Property

• The SelectedItem property contains the
currently selected item from the list box

• For example:

Chapter 5 – Slide 16

If lstItems.SelectedIndex <> -1
 strItemName = lstItems.SelectedItem.ToString()
End If

Copyright © 2011 Pearson Addison-Wesley

The Sorted Property

• Sorted is a Boolean property
• When set to True, values in the Items

property are displayed in alphabetical order
• When set to False, values in the Items

property are displayed in the order they were
added

• Set to False by default

Chapter 5 – Slide 17

Copyright © 2011 Pearson Addison-Wesley

The Items.Add Method

• To store values in the Items property with code at
runtime, use the Items.Add method

• Here is the general format:

• ListBox is the name of the ListBox control
• Item is the value to be added to the Items property
• Example:

Chapter 5 – Slide 18

ListBox.Items.Add(Item)

lstStudents.Items.Add("Sharon")

Copyright © 2011 Pearson Addison-Wesley

The Items.Insert Method

• To insert an item at a specific position, use the Items.Insert
method

• General Format:

• ListBox is the name of the ListBox control
• Index is an integer value for the position where Item is to be

placed in the Items collection
• Item is the item you wish to insert
• Items that follow are moved down
• For example:

Chapter 5 – Slide 19

ListBox.Items.Insert(Index, Item)

lstStudents.Items.Insert(2, "Jean")

Copyright © 2011 Pearson Addison-Wesley

Methods to Remove Items

• ListBox.Items.RemoveAt(Index)
– Removes item at the specified Index

• ListBox.Items.Remove(Item)
– Removes item with value specified by Item

• ListBox.Items.Clear()
– Removes all items in the Items property

• Examples:

Chapter 5 – Slide 20

lstStudents.Items.RemoveAt(2) ' Remove 3rd item
lstStudents.Items.Remove("Jean") ' Remove item "Jean"
lstStudents.Items.Clear() ' Remove all items

Copyright © 2011 Pearson Addison-Wesley

Other List Box Methods

• ListBox.Items.Contains(Item)
– Returns True if Item is found in the collection

• ListBox.Items.IndexOf(Item)
– Returns an integer with the index position of the

first occurrence of Item in the collection
• Examples:

• Tutorial 5-1 provides more examples of list box
controls, methods and properties

Chapter 5 – Slide 21

blnFound = lstMonths.Items.Contains("March")
intIndex = lstMonths.Items.IndexOf("March")

Copyright © 2011 Pearson Addison-Wesley

Important Collection Methods and Properties

Chapter 5 – Slide 22

 Method or Property Description
Add (item As Object) Method: adds item to the collection, returning its index position

Clear () Method: removes all items in the collection. No return value

Contains (value As Object) Method: returns True if value is found at least once in the
collection.

Count Property: returns the number of items in the collection. Read-only

IndexOf (value As Object)
Method: returns the Integer index position of the first occurrence
of value in the collection. If value is not found, the return value is
–1

Insert (index As Integer, item As Object) Method: insert item in the collection at position index. No return
value

Item (index As Integer) Property: returns the object located at position index

Remove (value As Object) Method: removes value from the collection. No return value

RemoveAt (index As Integer) Method: removes the item at the specified index. No return value

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.3

INTRODUCTION TO LOOPS:
THE DO WHILE LOOP

A loop is a repeating structure that contains a block of program
statements.

Copyright © 2011 Pearson Addison-Wesley

Introduction

• A repetition structure, or loop causes one or
more statements to repeat

• Each repetition of the loop is called an iteration
• Visual Basic has three types of loops:

– Do While
– Do Until
– For… Next

• The difference among them is how they control
the repetition

Chapter 5 – Slide 24

Copyright © 2011 Pearson Addison-Wesley

The Do While Loop

• The Do While loop has
two important parts:
– a Boolean expression

that is tested for a True
or False value

– a statement or group of
statements that is
repeated as long as the
Boolean expression is
true, called
Conditionally executed
statements

Chapter 5 – Slide 25

Expression true? Process

False

True

Do While BooleanExpression
statement
(more statements may follow)
Loop

Copyright © 2011 Pearson Addison-Wesley

Example Do While Loop

• intCount initialized to 0
• Expression intCount < 10 is

tested
• If True, execute body:

– "Hello" added to
lstOutput Items
Collection

– intCount increases by 1
• Test expression again

– Repeat until intCount <
10 becomes False

Chapter 5 – Slide 26

Dim intCount As Integer = 0
Do While intCount < 10
 lstOutput.Items.Add("Hello")
 intCount += 1
Loop

Copyright © 2011 Pearson Addison-Wesley

Infinite Loops

• A loop must have some way to end itself
• Something within the body of the loop must

eventually force the test expression to false
• In the previous example

– The loop continues to repeat
– intCount increases by one for each repetition
– Finally intCount is not < 10 and the loop ends

• If the test expression can never be false, the loop
will continue to repeat forever
– This is called an infinite loop

Chapter 5 – Slide 27

Copyright © 2011 Pearson Addison-Wesley

Counters

• A counter is a variable that is
regularly incremented or
decremented each time a loop
iterates

• Increment means to add 1 to the
counter’s value
– intX = intX + 1
– intX += 1

• Decrement means to subtract 1
from the counter’s value
– intX = intX - 1
– intX -= 1

• Counters generally initialized
before loop begins

 ' Start at zero
 Dim intCount As Integer = 0
• Counter must be modified in

body of loop
 ' Increment the counter variable
 intCount += 1
• Loop ends when of value counter

variable exceeds the range of the
test expression

 ' False after ten iterations
 intCount < 10

Chapter 5 – Slide 28

Copyright © 2011 Pearson Addison-Wesley

Pretest and Posttest Do While Loops

• Previous Do While
loops are in pretest
form
– Expression is tested

before the body of the
loop is executed

– The body may not be
executed at all

• Do While loops also
have a posttest form
– The body of the loop is

executed first
– Then the expression is

evaluated
– Body repeats as long as

expression is true
– A posttest loop always

executes the body of the
loop at least once

Chapter 5 – Slide 29

Copyright © 2011 Pearson Addison-Wesley

The Posttest Do While Loop

• The Do While loop can also be written as a
 posttest loop:

• While BooleanExpression appears
 after the Loop keyword
• Tests its Boolean expression after
 each loop iteration
• Will always perform at least one iteration,
 even if its Boolean expression is false to start with

Chapter 5 – Slide 30

Boolean
Expression

Statement(s)

False

True

Do
 Statement
 (More statements may follow)
Loop While BooleanExpression

Copyright © 2011 Pearson Addison-Wesley

Example Posttest Do While Loop

Chapter 5 – Slide 31

Dim intCount As Integer = 100
Do
 MessageBox.Show("Hello World!")
 intCount += 1
Loop While intCount < 10

• intCount is initialized to 100
• The statements in the body of the loop execute
• The expression intCount < 10 is tested
• The expression is False
• The loop stops after the first iteration

• Tutorial 5-3 modifies Tutorial 5-2 to use a posttest Do While Loop

Dim intCount As Integer = 100
Do
 MessageBox.Show("Hello World!")
 intCount += 1
Loop While intCount < 10

Copyright © 2011 Pearson Addison-Wesley

Keeping a Running Total

• Many programming tasks require you to calculate
the total of a series of numbers
– Sales Totals
– Scores

• This calculation generally requires two elements:
– A loop that reads each number in the series and

accumulates the total, called a running total
– A variable that accumulates the total, called an

accumulator

Chapter 5 – Slide 32

Copyright © 2011 Pearson Addison-Wesley

Logic for Keeping a Running Total

Chapter 5 – Slide 33

Read the next
number

Is there
another
number
to read?

Set accumulator to 0

Add the number to
the accumulator

Yes
(True)

No
(False)

Setting the accumulator variable to zero
before entering the loop is a critical step

Copyright © 2011 Pearson Addison-Wesley

A Posttest Running Total Loop

• Tutorial 5-4 uses the
code shown here in
pretest form as part of a
more complete example

• Tutorial 5-5
demonstrates how to
structure a loop such
that the user can
specify the iterations

Chapter 5 – Slide 34

Const intNUM_DAYS = 5 ' Number days
Dim intCount As Integer = 1 ' Loop counter
Dim decSales As Decimal ' Daily sales
Dim decTotal As Decimal = 0 ' Total sales
Dim strInput As String ' Input string
' Get sales for each day.
Do
 ' Get daily sales amount from the user.
 strInput = InputBox("Enter the sales for day"
 & intCount.ToString())
 ' Convert user input string to a decimal.
 If Decimal.TryParse(strInput, decSales) Then
 decTotal += decSales ' Increment total
 intCount += 1 ' Input counter
 Else
 MessageBox.Show("Enter a number.")
 End If
Loop While intCount <= intNUM_DAYS

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.4

THE DO UNTIL AND FOR...NEXT
LOOPS

The Do Until loop iterates until its test expression is true. The
For...Next loop uses a counter variable and iterates a specific
number of times.

Copyright © 2011 Pearson Addison-Wesley

The Do Until Loop

• A Do Until loop iterates until an expression is true
– Repeats as long as its test expression is False
– Ends when its test expression becomes True
– Can be written in either pretest or posttest form

• Tutorial 5-6 provides a hands-on example of a
pretest Do Until loop

Chapter 5 – Slide 36

Pretest General Format:
Do Until BooleanExpression
 Statement
 (More statements may follow)
Loop

Posttest General Format:
Do
 Statement
 (More statements may follow)
Loop Until BooleanExpression

Copyright © 2011 Pearson Addison-Wesley

The For...Next Loop

• Ideal for loops that require a counter, pretest form only

• For, To, and Next are keywords
• CounterVariable tracks number of iterations
• StartValue is initial value of counter
• EndValue is counter number of final iteration
• Optional Step Increment allows the counter to increment at a

value other than 1 at each iteration of the loop

Chapter 5 – Slide 37

For CounterVariable = StartValue To EndValue [Step Increment]
statement
(more statements may follow)
Next [CounterVariable]

Copyright © 2011 Pearson Addison-Wesley

Example of For…Next Loop

Chapter 5 – Slide 38

For intCount = 1 To 10
 MessageBox.Show("Hello")
Next

• Step 1: intCount is set to 1 (the start value)
• Step 2: intCount is compared to 10 (the end value)

» If intCount is less than or equal to 10
• Continue to Step 3
• Otherwise the loop is exited

• Step 3: The MessageBox.Show("Hello") statement is executed
• Step 4: intCount is incremented by 1
• Step 5: Go back to Step 2 and repeat this sequence

For intCount = 1 To 10
MessageBox.Show("Hello")
Next

Copyright © 2011 Pearson Addison-Wesley

Flowchart of For…Next Loop

Chapter 5 – Slide 39

intCount
<= 10? Display "Hello"

Yes

No

Set intCount to 1

Add 1 to intCount

Copyright © 2011 Pearson Addison-Wesley

Specifying a Step Value

• The step value is the value added to the counter variable at the end of
each iteration

• Optional and if not specified, defaults to 1
• The following loop iterates 10 times with counter values 0, 10, 20, …, 80,

90, 100

• Step value may be negative, causing the loop to count downward

Chapter 5 – Slide 40

For intCount = 10 To 1 Step -1
 MessageBox.Show(intCount.ToString())
Next

For intCount = 0 To 100 Step 10
 MessageBox.Show(intCount.ToString())
Next

Copyright © 2011 Pearson Addison-Wesley

Summing a Series of Numbers

• The For...Next loop can be used to calculate
the sum of a series of numbers

Chapter 5 – Slide 41

Dim intCount As Integer ' Loop counter
Dim intTotal As Integer = 0 ' Accumulator
' Add the numbers 1 through 100.
For intCount = 1 To 100
 intTotal += intCount
Next
' Display the sum of the numbers.
MessageBox.Show("The sum of 1 through 100 is " & intTotal.ToString())

Copyright © 2011 Pearson Addison-Wesley

Breaking Out of a Loop

• In some cases it is convenient to end a loop
before the test condition would end it

• The following statements accomplish this
– Exit Do (used in Do While or Do Until loops)
– Exit For (used in For…Next loops)

• Use this capability with caution
– It bypasses normal loop termination
– Makes code more difficult to debug

Chapter 5 – Slide 42

Copyright © 2011 Pearson Addison-Wesley

Deciding Which Loop to Use

• Each type of loop works best in different
situations
– The Do While loop

• When you wish the loop to repeat as long as the test
expression is true or at least once as a pretest loop

– The Do Until loop
• When you wish the loop to repeat as long as the test

expression is false or at least once as a pretest loop
– The For…Next loop

• Primarily used when the number of required iterations is
known

Chapter 5 – Slide 43

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.5

NESTED LOOPS

A loop that is contained inside another loop is called a nested loop.

Copyright © 2011 Pearson Addison-Wesley

Introduction

• A nested loop is a loop inside another loop
• The hands of a clock make a good example

– The hour hand makes 1 revolution for every 60
revolutions of the minute hand

– The minute hand makes 1 revolution for every 60
revolutions of the second hand

– For every revolution of the hour hand the second
hand makes 36,000 revolutions

Chapter 5 – Slide 45

Copyright © 2011 Pearson Addison-Wesley

Nested Loop Example

• The simulated clock
example contains
– An outer loop for

the hours
– A nested middle loop

for the minutes
– A nested inner loop

for the seconds

Chapter 5 – Slide 46

For intHours = 0 To 23
 lblHours.Text = intHours.ToString()
 For intMinutes = 0 To 59
 lblMinutes.Text = intMinutes.ToString()
 For intSeconds = 0 To 59
 lblSeconds.Text = intSeconds.ToString()
 Next
 Next
Next

Copyright © 2011 Pearson Addison-Wesley

Nested Loop Example Analysis

• The innermost (seconds) loop will iterate 60 times for
each iteration of the middle (minutes) loop

• The middle (minutes) loop will iterate 60 times for each
iteration of the outermost (hours) loop

• 24 iterations of the outermost (hours) loop require:
– 1,440 iterations of the middle (minutes) loop
– 86,400 iterations of the innermost (seconds) loop

• An inner loop goes through all its iterations for each

iteration of the outer loop
• Multiply iterations of all loops to get the total iterations

of the innermost loop

Chapter 5 – Slide 47

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.6

MULTICOLUMN LIST BOXES,
CHECKED LIST BOXES,
AND COMBO BOXES

A multicolumn list box displays items in columns with a horizontal
scroll bar, if necessary. A checked list box displays a check box next
to each item in the list. A combo box performs many of the same
functions as a list box, and it can also let the user enter text.

Copyright © 2011 Pearson Addison-Wesley

Multicolumn List Boxes

• ListBox control has a Multicolumn property
– Boolean property with default value of False
– If set to True, entries can appear side by side

• Below, ColumnWidth is set to 30
• Note the appearance of a horizontal scroll bar

in this case

Chapter 5 – Slide 49

Copyright © 2011 Pearson Addison-Wesley

Checked List Boxes

• A form of ListBox with the list box properties and
methods already discussed

• One item at a time may be selected but many
items in a Checked List Box can be checked

• The CheckOnClick property determines how
items may be checked
– False - user clicks item once

to select it, again to check it
– True - user clicks item only once

to both select it and check it

Chapter 5 – Slide 50

Copyright © 2011 Pearson Addison-Wesley

Finding the Status of Checked Items

• The GetItemChecked method determines if an
item is checked by returning a Boolean value

• General Format:

– Returns True if the item at Index has been

checked
– Otherwise, returns False

Chapter 5 – Slide 51

CheckedListBox.GetItemChecked(Index)

Copyright © 2011 Pearson Addison-Wesley

GetItemsChecked Example

• The following code counts the number of checked items:

Chapter 5 – Slide 52

Dim intIndex As Integer ' List box index
Dim intCheckedCities As Integer = 0 ' To count the checked cities

' Step through the items in the list box, counting
' the number of checked items.
For intIndex = 0 To clbCities.Items.Count - 1
 If clbCities.GetItemChecked(intIndex) = True Then
 intCheckedCities += 1
 End If
Next

' Display the number of checked cities.
MessageBox.Show("You checked " & intCheckedCities.ToString() &" cities.")

Copyright © 2011 Pearson Addison-Wesley

Combo Boxes Similar to List Boxes

• Both display a list of items to the user
• Both have Items, Items.Count, SelectedIndex,

SelectedItem, and Sorted properties
• Both have Items.Add, Items.Clear,

Items.Remove, and Items.RemoveAt methods
• These properties and methods work the same

with combo boxes and list boxes

Chapter 5 – Slide 53

Copyright © 2011 Pearson Addison-Wesley

Additional Combo Box Features

• A combo box also functions like a text box
• The combo box has a Text property
• The user may enter text into a combo box
• Or the user may select the text from a series

of list box type choices
• In code, we use the cbo prefix when naming

combo boxes

Chapter 5 – Slide 54

Copyright © 2011 Pearson Addison-Wesley

Combo Box Styles

• Simple Combo Box
– List is always shown

• Drop-down Combo Box
– List appears when user clicks

down arrow
– User can type text or select

Chapter 5 – Slide 55

Copyright © 2011 Pearson Addison-Wesley

Combo Box Styles

• Drop-down List Combo Box
– Behaves like a Drop-Down

Combo Box, but the user
may not enter text directly

• Tutorial 5-9 demonstrates the combo box

Chapter 5 – Slide 56

Copyright © 2011 Pearson Addison-Wesley

List Boxes versus Combo Boxes

• If restricting the user to select items listed
– If empty space

• Use list box
– If limited space

• Use drop-down list combo box

• If allowing user to select an item listed or enter an entirely
new item
– If empty space

• Use simple combo box
– If limited space

• Use drop-down combo box

Chapter 5 – Slide 57

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.7

RANDOM NUMBERS

Visual Basic provides tools to generate random numbers and initialize
the sequence of random numbers with a random seed value.

Copyright © 2011 Pearson Addison-Wesley

The Random Object

• Random numbers are used in games and simulations to create
random events

• Computers create pseudo-random numbers, which are not
truly random

• To generate random numbers in Visual Basic, create a
Random object reference variable

• For example:

– Creates a new Random object in memory called rand
– The rand variable can be used to call the object’s methods

for generating random numbers

Chapter 5 – Slide 59

Dim rand As New Random

Copyright © 2011 Pearson Addison-Wesley

The Next Method

• Once you have created a Random object, call its Next method to get a
random integer number

• Calling Next with no arguments

– Generates an integer between 0 and 2,147,483,647
• Alternatively, you can specify an integer argument for the upper limit

– The following Next method generates a number between 0 and 99

• Numeric range does not have to begin at zero
– Add or subtract to shift the numeric range upward or downward

Chapter 5 – Slide 60

intNum = rand.Next()

intNum = rand.Next(100)

intNum = rand.Next(10) + 1
intNum = rand.Next(100) - 50

Copyright © 2011 Pearson Addison-Wesley

The NextDouble Method

• Call a Random object’s NextDouble method to get a random floating-
point number in the range of 0.0 up to (but not including) 1.0

• If you want the random number to fall within a larger range, multiply it by
a scaling factor
– The following statement generates a random number between 0.0 and

500.0

– The following statement generates a random number between 100.0
and 600.0

• Tutorial 5-10 uses random numbers to simulate a coin toss

Chapter 5 – Slide 61

dblNum = rand.NextDouble()

dblNum = rand.NextDouble() * 500.0

dblNum = (rand.NextDouble() * 500.0) + 100.0

Copyright © 2011 Pearson Addison-Wesley

Random Number Seeds

• The seed value is used in the calculation that returns the next random
number in the series

• Using the same seed value results in the same series of random numbers
• The system time, which changes every hundredth of a second, is the

preferred seed value used by a Random object in most cases
• You can specify the seed value if you desire, when you create a Random

object
• For example:

– 1000 as the seed value generates the same series of random numbers
– Useful for specific tests and validations
– Boring and repetitive for computer games or simulations

Chapter 5 – Slide 62

Dim rand As New Random(1000)

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.8

SIMPLIFYING CODE WITH THE
WITH...END WITH STATEMENT

The With...End With statement allows you to simplify a series of
consecutive statements that perform operations using the same object.

Copyright © 2011 Pearson Addison-Wesley

The With...End With Statement

• Multiple statements that use the same control or other object

• Can be simplified using the With…End With statement

• Eliminates the need to repeatedly type the control name

Chapter 5 – Slide 64

txtName.Clear()
txtName.ForeColor = Color.Blue
txtName.BackColor = Color.Yellow
txtName.BorderStyle = BorderStyle.Fixed3D

With txtName
 .Clear()
 .ForeColor = Color.Blue
 .BackColor = Color.Yellow
 .BorderStyle = BorderStyle.Fixed3D
End With

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.9

TOOLTIPS

ToolTips are a standard and convenient way of providing help to
the users of an application. The ToolTip control allows you to assign
pop-up hints to the other controls on a form.

Copyright © 2011 Pearson Addison-Wesley

What is a Tool Tip?

• A Tool Tip is the short text message you see
when holding the mouse over a control

• These are easy to set up and use in Visual
Basic forms

• The ToolTip control allows you to create tool
tips for other controls on a form

Chapter 5 – Slide 66

Copyright © 2011 Pearson Addison-Wesley

Adding a ToolTip Control

• Display the form in Design view
• Double-click the ToolTip tool in the Toolbox
• The ToolTip control is invisible at runtime

– It appears in the component tray, not the form
– Component tray is a resizable region at the bottom of

the Design window that hold invisible controls
• Form controls now have a ToolTip property
• This new property holds the text string that will

be displayed for that control

Chapter 5 – Slide 67

Copyright © 2011 Pearson Addison-Wesley

ToolTip Properties

• Select the ToolTip control from the tray
• View Properties window to see the following

– An InitialDelay property that regulates the delay
before a tip appears

– An AutoPopDelay property that determines how
long a tip is displayed

– The ReshowDelay property determines the time
between the display of different tips as the user
moves the mouse from control to control

• Tutorial 5-11 demonstrates adding tool tips to
a form

Chapter 5 – Slide 68

Addison Wesley
is an imprint of

© 2011 Pearson Addison-Wesley. All rights reserved.

Addison Wesley
is an imprint of

Section 5.10

FOCUS ON PROGRAM DESIGN AND PROBLEM SOLVING:
BUILDING THE VEHICLE LOAN CALCULATOR APPLICATION

In this section, you build the Vehicle Loan Calculator application.
The application uses a loop, input validation, and ToolTips. This section
also covers some of the Visual Basic intrinsic financial functions.

Copyright © 2011 Pearson Addison-Wesley

Introduction

• Visual Basic has several built-in functions for
performing financial calculations

• You will build a program named Vehicle Loan
Calculator

• It uses the following functions:
– Pmt
– Ipmt
– PPmt

Chapter 5 – Slide 70

Copyright © 2011 Pearson Addison-Wesley

The Pmt Function

• The Pmt function returns the periodic payment amount for a loan with a
fixed interest rate

• PeriodicInterestRate is the rate of interest per period
• NumberOfPeriods is the total number of months
• LoanAmount is the amount being borrowed, must be negative

• For example:

• dblAnnInt holds the annual interest rate
• 24 is the number of months of the loan
• The amount of the loan is $5000
• dblPayment holds the fixed monthly payment amount

 Chapter 5 – Slide 71

Pmt(PeriodicInterestRate, NumberOfPeriods, –LoanAmount)

dblPayment = Pmt(dblAnnInt / 12, 24, -5000)

Copyright © 2011 Pearson Addison-Wesley

The IPmt Function

• The IPmt function returns the interest payment for a specific period of a loan with
a fixed interest rate and fixed monthly payments

• PeriodicInterestRate is the rate of interest per period
• Period is the period for which you would like the payment
• NumberOfPeriods is the total number of months
• LoanAmount is the amount being borrowed, must be negative

• For example:

• dblAnnInt holds the annual interest rate
• 6 is the number of the month for which to calculate the payment
• 24 is the number of months of the loan
• The amount of the loan is $5000
• dblInterest holds the amount of interest paid in month 6 of the loan

 Chapter 5 – Slide 72

IPmt(PeriodicInterestRate, Period, NumberOfPeriods, –LoanAmount)

dblInterest = IPmt(dblAnnInt / 12, 6, 24, -5000)

Copyright © 2011 Pearson Addison-Wesley

The PPmt Function

• The PPmt function returns the principal payment for a specific period on a loan
with a fixed interest rate and fixed monthly payments

• PeriodicInterestRate is the rate of interest per period
• Period is the period for which you would like the payment
• NumberOfPeriods is the total number of months
• LoanAmount is the amount being borrowed, must be negative

• For example:

• dblAnnInt holds the annual interest rate
• 6 is the number of the month for which to calculate the payment
• 24 is the number of months of the loan
• The amount of the loan is $5000
• dblPrincipal holds the amount of principal paid in month 6 of the loan

Chapter 5 – Slide 73

PPmt(PeriodicInterestRate, Period, NumberOfPeriods, –LoanAmount)

dblPrincipal = PPmt(dblAnnInt / 12, 6, 24, -5000)

Copyright © 2011 Pearson Addison-Wesley

The Case Study

• A credit union branch manager asks you to write an
application named Vehicle Loan Calculator that displays the
following information for a loan:
– The monthly payment amount
– The amount of the monthly payment applied toward

interest
– The amount of the monthly payment applied toward

principal
• The credit union currently charges

– 8.9% annual interest for new vehicle loans
– 9.5% annual interest on used vehicle loans

Chapter 5 – Slide 74

Copyright © 2011 Pearson Addison-Wesley

Sketch of the Vehicle Loan Calculator Form

Chapter 5 – Slide 75

Copyright © 2011 Pearson Addison-Wesley

Event Handlers

Chapter 5 – Slide 76

Method Description

btnCalculate_Click Calculates and displays a table in the list box showing
interest and principal payments for the loan

btnClear_Click Resets the interest rate, clears the text boxes, and
clears the list box

btnExit_Click Ends the application

radNew_CheckedChanged Updates the annual interest rate if the user selects a
new vehicle loan

radUsed_CheckedChanged Updates the annual interest rate if the user selects a
used vehicle loan

Copyright © 2011 Pearson Addison-Wesley

btnCalculate_Click Event Handler Pseudocode

Chapter 5 – Slide 77

The pseudocode does not indicate input validation, and the actual arguments
that need to be passed to the Pmt, IPmt, and PPmt functions are not shown

Get VehicleCost from the form
Get DownPayment from the form
Get Months from the form
Loan = VehicleCost – DownPayment
MonthlyPayment = Pmt()
For Count = 0 To Months
 Interest = IPmt()
 Principal = PPmt()
 Display Month, Payment, Interest, and Principal in list box
Next

Copyright © 2011 Pearson Addison-Wesley

btnCalculate_Click Event Handler Flowchart

Chapter 5 – Slide 78

Copyright © 2011 Pearson Addison-Wesley

radNew_CheckedChanged & radUsed_CheckedChanged
Event Handler Pseudocode

Chapter 5 – Slide 79

If radNew is selected Then
 Annual Interest Rate = 0.089
 Display Annual Interest Rate in lblAnnInt
End If

If radUsed is selected Then
 Annual Interest Rate = 0.095
 Display Annual Interest Rate in lblAnnInt
End If

Copyright © 2011 Pearson Addison-Wesley

radNew_CheckedChanged & radUsed_CheckedChanged
Event Handler Pseudocode

Chapter 5 – Slide 80

	Slide Number 1
	Chapter 5
	Introduction
	Input Boxes
	Overview
	General Format
	Example Usage
	List Boxes
	Overview
	The Items Property
	Adding Items to the Items Collection
	The Items.Count Property
	Item Indexing
	Handling Exceptions Caused by Indexes
	The SelectedIndex Property
	The SelectedItem Property
	The Sorted Property
	The Items.Add Method
	The Items.Insert Method
	Methods to Remove Items
	Other List Box Methods
	Important Collection Methods and Properties
	Introduction to Loops: �The Do While Loop
	Introduction
	The Do While Loop
	Example Do While Loop
	Infinite Loops
	Counters
	Pretest and Posttest Do While Loops
	The Posttest Do While Loop
	Example Posttest Do While Loop
	Keeping a Running Total
	Logic for Keeping a Running Total
	A Posttest Running Total Loop
	The Do Until and For...Next Loops
	The Do Until Loop
	The For...Next Loop
	Example of For…Next Loop
	Flowchart of For…Next Loop
	Specifying a Step Value
	Summing a Series of Numbers
	Breaking Out of a Loop
	Deciding Which Loop to Use
	Nested Loops
	Introduction
	Nested Loop Example
	Nested Loop Example Analysis
	Multicolumn List Boxes, �Checked List Boxes, �and Combo Boxes
	Multicolumn List Boxes
	Checked List Boxes
	Finding the Status of Checked Items
	GetItemsChecked Example
	Combo Boxes Similar to List Boxes
	Additional Combo Box Features
	Combo Box Styles
	Combo Box Styles
	List Boxes versus Combo Boxes
	Random Numbers
	The Random Object
	The Next Method
	The NextDouble Method
	Random Number Seeds
	Simplifying Code with the �With...End With Statement
	The With...End With Statement
	ToolTips
	What is a Tool Tip?
	Adding a ToolTip Control
	ToolTip Properties
	Focus on Program Design and Problem Solving:�Building the Vehicle Loan Calculator Application
	Introduction
	The Pmt Function
	The IPmt Function
	The PPmt Function
	The Case Study
	Sketch of the Vehicle Loan Calculator Form
	Event Handlers
	btnCalculate_Click Event Handler Pseudocode
	btnCalculate_Click Event Handler Flowchart
	radNew_CheckedChanged & radUsed_CheckedChanged �Event Handler Pseudocode
	radNew_CheckedChanged & radUsed_CheckedChanged �Event Handler Pseudocode

