
University of Houston-Downtown
Department of Computer and Mathematical Sciences

CS4315---Project# 4

Performance Analysis of Virtual Memory Management

This programming assignment is designed to illustrate concepts involved in demand paged virtual memory management. You will compare the performance of two page replacement algorithms: FIFO and LRU. This is a performance analysis assignment and involves implementation of a simulation experiment, followed by analysis of the results. The analysis portion is a write up and discussion of your experiment.  This project is to be done in groups of two.

You are to write a program to test the performance of two page replacement algorithms in a demand paged virtual memory management system. The two algorithms are FIFO and LRU (see your textbook). Your program is to simulate the execution of 5 sample user jobs, modeling only the paging behavior of each job with the assumption that they would execute one after the other (i.e. with no concurrency).

INPUT: For each job, the input to your program will be the page reference string from that job (each page reference is a decimal number representing the page number being referenced). For each page replacement algorithm, your program will record the page fault rate for frame allocations varying from 10% to 90% in increments of 10%.  For example, with a frame allocation of 10%, the number of memory frames allocated to the job is 10% of the total number of logical pages in the job.  This is repeated for each of the 5 user jobs.  The input files contain the reference strings for the user programs in the following format (Items are separated by blanks or newline). 

line 1: JOB number

line 2: total number of pages in the job

line 3: total number of page references in the entire reference string

lines 4-n:  reference string in decimal separated by blank or newline.

last line: -1

The five sample jobs in the format described above can be downloaded from the following links:  

paging.input1,  paging.input2, paging.input3, paging.input4, paging.input5
OUTPUT: The output of your program consists of one table for each page replacement algorithm that shows the page fault rate for each combination of user job and frame allocation. In addition, you will print out a summary table giving the average page fault rate over all the user jobs. (Note: the page fault rate is defined as the ratio of the number of page faults to the total number of pages references.)

PROGRAMMING GUIDELINES: 
1.Your program must simulate the OS paging mechanism which given the next page reference, looks up the page in the page table and records a page fault if that page is not in memory. If a page fault occurs, you must invoke the appropriate page replacement algorithm to choose a page to replace, update the page table, and continue. 

2.Certain data structures are pre-defined for you if you wish to use them. These are available in file Paging.h which you may copy to your account  Note: the file does not contain all the data structures needed.

3. Use either Borland C++ or Visual C++.

4. In terms of implementation, use a queue for the FIFO algorithm. For the LRU you may want to use a stack (double-linked list) or for programming simplicity use a time_of_use field with each page table entry.

5.Get started IMMEDIATELY on this assignment. Before doing any coding, understand paging, page faults, and page replacement thoroughly. Implement FIFO first and LRU last. Get one running first before you add on the next. It is better to turn in a running program that works for only one algorithm than a non-running program that has code for two. 

6. For program efficiency reasons, you may want to use a temporary array to read all references at once from input file and then use the array during simulation. 

ANALYSIS GUIDELINES: 
1. Write up a separate analysis of your experimental results.   Maximum of three pages.

2. Graph the average page fault rate (x axis = frame allocation, y axis = page fault rate) for the two algorithms on one graph. 

3. Describe which of the two page replacement algorithms performed the best on this set of data and by how much. Do NOT list the advantages and disadvantages of each algorithm from the textbook. Discuss the performance of the algorithms IN THIS SIMULATION EXPERIMENT based on the input traces used. If your results contradict the textbook, give reasons why you think your results are different. 

4. Discuss the overhead incurred for each algorithm based on your implementation, including both data structures space and runtime overhead. Which parts of your implementation would actually occur in the operating system and which parts would involve hardware? 

WHAT TO TURN IN: 
1. Turn in both source code and compiled binary (paging.c, paging.h, and an executable).  Send as attachements by e-mail to berracheda@uhd.edu.  Send a carbon Copy to yourself and make sure the source files can be opened and the biunary file can be executed once downloaded.  Indicate which compiler you used. 

2. I will run your program on the test data you have access to and may also run it on another set of test programs that you will not have access to. 

3. Hand in a printout of  the output as specified above and your analysis of the results.  
GRADING PROCEDURE

Running your code: 54 pts total

· output is as specified in handout: 10 pts

· FIFO, LRU: 18 pts each

· Avg. table: 8 pts 

From your printout: 46 pts total

· LRU subroutine (18)

· FIFO subroutine (18)

· for each will look at how you kept track of which page to replace: reasonable, understandable, correct code.

· overall code flow and modularity: program and function descriptions (5), in-line comments (5)
CS4315—Project4
Page 1

